Advertisement

Set-Valued Analysis

, Volume 16, Issue 2–3, pp 267–279 | Cite as

Semicontinuity of Solution Sets to Parametric Quasivariational Inclusions with Applications to Traffic Networks I: Upper Semicontinuities

  • Lam Quoc Anh
  • Phan Quoc Khanh
Article

Abstract

We propose some notions related to semicontinuity of a multivalued mapping and provide a clear insight for various semicontinuity-related definitions. We establish verifiable sufficient conditions for solution sets of general quasivariational inclusion problems to have these semicontinuity-related properties. Our results are proved to include and improve recent ones in the literature by corollaries and examples. Part I is devoted to upper semicontinuity properties of solution sets. Part II discusses lower semicontinuities of these sets and applications, where we discuss in details a traffic network problem as a sample for employing the main results in practical situations

Keywords

Quasivariational inclusion problems Lower and upper semicontinuities Hausdorff lower and upper semicontinuities U-lower-level closedness U-upper-level closedness Quasiequilibrium problems Quasivariational inequalities Traffic network problems 

Mathematics Subject Classification (2000)

90C31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, R., Siddiqi, A.H., Khan, Z.: Proximal point algorithm for generalized multivalued nonlinear quasivariational-like inclusions in Banach spaces. Appl. Math. Comput. 163, 295–308 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution sets of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Anh, L.Q., Khanh, P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bianchi, M., Pini, R.: A note on stability for parametric equilibrium problems. Oper. Res. Lett. 31, 445–450 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bianchi, M., Pini, R.: Sensitivity for parametric vector equilibria. Optimization 55, 221–230 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Chidume, C.E., Zegeye, H., Kazmi, K.R.: Existence and convergence theorems for a class of multivalued variational inclusions in Banach spaces. Nonlinear Anal. 59, 694–656 (2004)MathSciNetGoogle Scholar
  7. 7.
    Ding, X.P.: Sensitivity analysis for generalized nonlinear implicit quasivariational inclusions. Appl. Math. Lett. 15, 225–235 (2004)CrossRefGoogle Scholar
  8. 8.
    Ding, X.P., Xia, F.Q.: A new class of completely generalized quasivariational inclusions in Banach spaces. J. Comput. Appl. Math. 147, 369–383 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Durea, M.: Variational inclusion for contingent derivative of set valued maps. J. Math. Anal. Appl. 292, 351–363 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Fang, Y.P., Huang, N.J.: H-accretive opertators and resolvent operator technique for solving variational inclusions in Banach spaces. Appl. Math. Lett. 17, 647–653 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Hai, N.X., Khanh, P.Q.: The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328, 1268–1277 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Hai, N.X., Khanh, P.Q.: Systems of set-valued quasivariational inclusion problems. J. Optim. Theory Appl. 135, 55–67 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Hai, N.X., Khanh, P.Q., Quan, N.H.: On the existence of solutions to quasivariational inclusion problems. (submitted for publication)Google Scholar
  14. 14.
    Hu, S., Parageorgiou, N.S.: Handbook of Multivalued Analysis. Kluwer, London (1997)zbMATHGoogle Scholar
  15. 15.
    Huang, N.J., Fang, Y.P.: Interative processes with errors for nonlinear set valued variational inclusions involving accretive type mappings. Comput. Math. Appl. 47, 727–738 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Huang, N.J., Li, J., Thompson, H.B.: Stability for parametric implicit vector equilibrium problems. Math. Comput. Modelling 43, 1267–1274 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kazmi, K.R., Bhat, M.I.: Convergence and stability of iterative algorithms of generalized set-valued variational-like inclusions in Banach spaces. Appl. Math. Comput. 166, 164–180 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Khanh, P.Q., Luu, L.M.: Upper semicontinuity of the solution set of parametric multivalued vector quasivariational inequalities and applications. J. Global Optim. 32, 569–580 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Khanh, P.Q., Luu, L.M.: Lower and upper semicontinuity of the solution sets and approximate solution sets to parametric multivalued quasivariational inequalities. J. Optim. Theory Appl. 133, 329–339 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kristály, A., Varga, C.: Set-valued versions of Ky Fan’s inequality with application to variational inclusion theory. J. Math. Anal. Appl. 282, 8–20 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Lan, H.Y.: (A, η)-accretive mappings and set-valued variational inclusions with relaxed cocoercive mappings in Banach spaces. Appl. Math. Lett. 20, 571–577 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Lancaster, K.: Mathematical Economics. Macmillan, New York, NY (1968)Google Scholar
  23. 23.
    Li, S.J., Chen, G.Y., Teo, K.L.: On the stability of generalized vector quasivariational inequality problems. J. Optim. Theory Appl. 113, 283–295 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Luc, D.T., Tan, N.X.: Existence conditions in variational inclusions with constraints. Optimization 53, 505–515 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Luc, D.T., Tan, N.X.: The existence of solutions of quasivariational inclusion problems of Minty type (2008, preprint)Google Scholar
  26. 26.
    Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge, UK (1996)Google Scholar
  27. 27.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 330. Springer, Berlin, (2006)Google Scholar
  28. 28.
    Mordukhovich, B.S.: Variational analysis and generalized differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 331, Springer, Berlin (2006)Google Scholar
  29. 29.
    Mordukhovich, B.S., Outrata, J.V.: Coderivative analysis of quasivariational inequalities with applications to stability and optimization. SIAM J. Optim. 18, 389–412 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Outrata, J.V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  31. 31.
    Peng, J.W.: Set-valued variational inclusions with T-accretive operators in Banach spaces. Appl. Math. Lett. 19, 273–282 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Salahuddin: Parametric generalized set-valued variational inclusions and resolvent equations. J. Math. Anal. Appl. 298, 146–156 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Salahuddin, Ahmada, M.K., Siddiqia, A.H.: Existence results for generalized nonlinear variational inclusions. Appl. Math. Lett. 18, 859–864 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Shi, C., Liu, S.: Generalized set valued variational inclusions in q −uniformly smooth Banach spaces. J. Math. Anal. Appl. 296, 553–562 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Tan, N.X.: On the existence of solutions of quasivariational inclusion problems. J. Optim. Theory Appl. 123, 619–638 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Tuan, L.A., Sach, P.H.: Existence of solutions of generalized quasivariational inequalities with set-valued maps. Acta Math. Vietnam 29, 309–316 (2004)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Verma, R.U.: General nonlinear variational inclusion problems involving A-monotone mappings. Appl. Math. Lett. 19, 960–963 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Verma, R.U.: Sensitivity analysis for generalized strongly monotone variational inclusions based on the (A, η)-resolvent operator technique. Appl. Math. Lett. 19, 1409–1413 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang, Q.B.: Generalized implicit variational-like inclusion problems involving G − η-monotone mappings. Appl. Math. Lett. 20, 216–221 (2007)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsTeacher College, Cantho UniversityCanthoVietnam
  2. 2.Department of MathematicsInternational University of Hochiminh CityHochiminh CityVietnam

Personalised recommendations