Advertisement

Set-Valued Analysis

, Volume 15, Issue 3, pp 307–315 | Cite as

A New and Self-Contained Proof of Borwein’s Norm Duality Theorem

  • Francisco J. Aragón ArtachoEmail author
Article
  • 60 Downloads

Abstract

Borwein’s norm duality theorem establishes the equality between the outer (inner) norm of a sublinear mapping and the inner (outer) norm of its adjoint mappings. In this note we provide an extended version of this theorem with a new and self-contained proof relying only on the Hahn-Banach theorem. We also give examples showing that the assumptions of the theorem cannot be relaxed.

Key words

convex process sublinear mapping norm duality inner norm outer norm 

Mathematics Subject Classifications (2000)

49J53 47H04 54C60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aragón, F.J., Dontchev, A.L.: On the Inner and Outer Norms of Sublinear Mappings, DOI 10.1007/s11228-006-0034-4
  2. 2.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Borwein, J.M.: Adjoint process duality. Math. Oper. Res. 8(3), 403–434 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Springer-Verlag, New York (2000)zbMATHGoogle Scholar
  5. 5.
    Borwein, J.M.: A Lagrange multiplier theorem and a Sandwich theorem for convex relations. Math. Scand. 48, 189-204 (1981)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Borwein, J.M.: Norm duality for convex processes and applications. J. Optim. Theory Appl. 48(1), 53–64 (1986)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Robinson, S.M.: Normed convex processes. Trans. Amer. Math. Soc. 174, 127–140 (1972)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton NJ (1970)zbMATHGoogle Scholar
  9. 9.
    Rockafellar, R.T.: Monotone Processes of Convex and Concave Type. Mem. Amer. Math. Soc. 77. Providence, RI (1967)Google Scholar
  10. 10.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, Berlin (1998)zbMATHGoogle Scholar
  11. 11.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Statistics and Operations ResearchUniversity of AlicanteAlicanteSpain

Personalised recommendations