Advertisement

Set-Valued Analysis

, Volume 14, Issue 4, pp 413–424 | Cite as

Some Properties of General Minimization Problems with Constraints

  • Vy K. LeEmail author
  • Dumitru Motreanu
Article

Abstract

The paper studies the existence of solutions and necessary conditions of optimality for a general minimization problem with constraints. Although we focus mainly on the case where the cost functional is locally Lipschitz, a general Palais–Smale condition is proposed and some of its properties are studied. Applications to an optimal control problem and a Lagrange multiplier rule are also given.

Key words

minimization problems constraints Palais–Smale condition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Lectures on Elliptic Boundary Value Problems. D. Van Nostrand Co., Inc., Princeton, New Jersey (1965)zbMATHGoogle Scholar
  2. 2.
    Aizicovici, S., Motreanu, D., Pavel, N.H.: Nonlinear programming problems associated with closed range operators. Appl. Math. Optim. 40, 211–228 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Aizicovici, S., Motreanu, D., Pavel, N.H.: Fully nonlinear programming problems with closed range operators. Lecture Notes in Pure and Appl. Math. 225, Dekker, New York (2002)Google Scholar
  4. 4.
    Aizicovici, S., Motreanu, D., Pavel, N.H.: Nonlinear mathematical programming and optimal control. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11, 503–524 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Aubin, J.-P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Boston, Massachusetts (1990)zbMATHGoogle Scholar
  6. 6.
    Brézis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983)Google Scholar
  7. 7.
    Čaklović, L., Li, S.J., Willem, M.: A note on Palais–Smale condition and coercivity. Differential Integral Equations 3(4), 799–800 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania (1990)zbMATHGoogle Scholar
  10. 10.
    Costa, D.G., de B.Silva, E.A.: The Palais–Smale condition versus coercivity. Nonlinear Anal. 16(4), 371–381 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.) 1, 443–474 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Goeleven, D.: A note on Palais–Smale condition in the sense of Szulkin. Differential Integral Equations 6(5), 1041–1043 (1993)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kourogenis, N.C., Papageorgiou, N.S.: A weak nonsmooth Palais–Smale condition and coercivity. Rend. Circ. Mat. Palermo 49(3), 521–526 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Le, V.K., Motreanu, D.: On a general minimization problem with constraints. Proc. Conference on Differential and Difference Equations and Applications, Melbourne FL, 07/2005 (submitted)Google Scholar
  15. 15.
    Li, S.J.: An existence theorem on multiple critical points and its application in nonlinear P. D. E. Acta Math. Sci. 4 (1984)Google Scholar
  16. 16.
    Mezei, I.I.: Relation between the Palais–Smale condition and coerciveness for multivalued mappings. Stud. Univ. Babeş-Bolyai Math. 47(1), 67–72 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Motreanu, D., Motreanu, V.V.: Coerciveness property for a class of non-smooth functionals. Z. Anal. Anwendungen 19(4), 1087–1093 (2000)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Kluwer, Dordrecht (1999)zbMATHGoogle Scholar
  19. 19.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol I, II. Springer, Berlin Heidelberg New York (2006)Google Scholar
  20. 20.
    Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, Berlin Heidelberg New York (1993)zbMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin Heidelberg New York (1998)zbMATHGoogle Scholar
  22. 22.
    Willem, M.: An introduction to critical point theory, Lecture notes, SMR 281/5211, I. C. T. P., Trieste (1988)Google Scholar
  23. 23.
    Xu, H.-K.: On the Palais–Smale condition for nondifferentiable functionals. Taiwan. J. Math. 4(4), 627–634 (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of Missouri-RollaRollaUSA
  2. 2.Département de MathématiquesUniversité de PerpignanPerpignanFrance

Personalised recommendations