Advertisement

The Journal of Supercomputing

, Volume 75, Issue 11, pp 7426–7459 | Cite as

A load balancing virtual level routing (LBVLR) using mobile mule for large sensor networks

  • Sunil Kumar SinghEmail author
  • Prabhat Kumar
Article
  • 73 Downloads

Abstract

In a large sensor network, the data are usually routed back to the static base station (BS) using multi-hop communication. The sensor nodes near the BS suffer from an energy hole problem owing to the heavier data traffic load on them. Hence, the nodes near to the BS die early and thereby minimize the network lifetime. The mobile carriers have been considered as a better approach to balance the energy consumption by minimizing the number of transmissions. In spite of several benefits, the mobile carriers have a lot of challenges in data collection from sensor nodes. This paper presents a load balancing virtual level-based routing (LBVLR) using a data mule as a mobile carrier to deal with energy holes and ensure reliable data transfer. Our scheme has attempted to palliate the energy hole problem by applying horizontal level routing in the left and right directions. Fixed virtual rectangular grids of equal size are formed with the help of a mobile data mule and the BS that minimizes the network overheads, which saves a significant amount of energy. This approach uses three different data collection schemes based on the mule speed during trajectory, and we name them uniform speed of mule, variable speed of mule and sojourn point of mule. To compare the performance with the other works, LBVLR is evaluated mathematically and extensive simulations are conducted. The simulation results show a significant improvement in terms of average energy usage, data delivery delay and data delivery ratio compared with the other two similar kinds of well-known routing protocols.

Keywords

Large sensor network Grid-based cluster Mobile data mule Energy hole Grid head Virtual level routing Energy efficient 

Notes

Acknowledgements

The authors would like to acknowledge the Ministry of Electronics and Information Technology (MeitY), Government of India, for supporting the financial assistant during research work through “Visvesvaraya PhD Scheme for Electronics and IT”.

References

  1. 1.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393CrossRefGoogle Scholar
  2. 2.
    Rawat P, Singh KD, Chaouchi H, Bonnin JM (2014) Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomput 68(1):1.  https://doi.org/10.1007/s11227-013-1021-9 CrossRefGoogle Scholar
  3. 3.
    Younis M, Akkaya K (2008) Strategies and techniques for node placement in wireless sensor networks: a survey. Ad Hoc Netw 6(4):621.  https://doi.org/10.1016/j.adhoc.2007.05.003 CrossRefGoogle Scholar
  4. 4.
    Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Netw 3(3):325.  https://doi.org/10.1016/j.adhoc.2003.09.010 CrossRefGoogle Scholar
  5. 5.
    Olariu S, Stojmenovic I (2006) Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting, In: Proceedings IEEE INFOCOM 2006 25TH IEEE International Conference on Computer Communications, pp 1–12.  https://doi.org/10.1109/INFOCOM.2006.296
  6. 6.
    Heinzelman W, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000, p 10, vol 2.  https://doi.org/10.1109/HICSS.2000.926982
  7. 7.
    Singh SK, Kumar P, Singh JP (2017) A survey on successors of leach protocol. IEEE Access 5:4298.  https://doi.org/10.1109/ACCESS.2017.2666082 CrossRefGoogle Scholar
  8. 8.
    Huang CF, Lin WC (2016) Data collection for multiple mobile users in wireless sensor networks. J Supercomput 72(7):2651.  https://doi.org/10.1007/s11227-015-1550-5 CrossRefGoogle Scholar
  9. 9.
    Ghaleb M, Subramaniam S, Othman M, Zukarnain Z (2014) Predetermined path of mobile data gathering in wireless sensor networks based on network layout. EURASIP J Wirel Commun Netw 2014(1):51CrossRefGoogle Scholar
  10. 10.
    Shah R, Roy S, Jain S, Brunette W (2003) Data MULEs: modeling a three-tier architecture for sparse sensor networks, In: 2003 IEEE International Workshop on Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE., pp 30–41.  https://doi.org/10.1109/SNPA.2003.1203354
  11. 11.
    Hamida EB, Chelius G (2008) Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wirel Commun 15(6):31.  https://doi.org/10.1109/MWC.2008.4749745 CrossRefGoogle Scholar
  12. 12.
    Singh SK, Kumar P (2019) A comprehensive survey on trajectory schemes for data collection using mobile elements in wsns. J Ambient Intell Humaniz Comput.  https://doi.org/10.1007/s12652-019-01268-4 CrossRefGoogle Scholar
  13. 13.
    Dong M, Ota K, Lin M, Tang Z, Du S, Zhu H (2014) Uav-assisted data gathering in wireless sensor networks. J Supercomput 70(3):1142.  https://doi.org/10.1007/s11227-014-1161-6 CrossRefGoogle Scholar
  14. 14.
    Rostami AS, Badkoobe M, Mohanna F, keshavarz H, Hosseinabadi AAR, Sangaiah AK (2018) Survey on clustering in heterogeneous and homogeneous wireless sensor networks. J Supercomput 74(1):277.  https://doi.org/10.1007/s11227-017-2128-1 CrossRefGoogle Scholar
  15. 15.
    Diwakaran S, Perumal B, Vimala Devi K (2018) A cluster prediction model-based data collection for energy efficient wireless sensor network. J Supercomput.  https://doi.org/10.1007/s11227-018-2437-z CrossRefGoogle Scholar
  16. 16.
    Srinivasa Rao PC, Banka H (2017) Energy efficient clustering algorithms for wireless sensor networks: novel chemical reaction optimization approach. Wireless Netw 23(2):433.  https://doi.org/10.1007/s11276-015-1156-0 CrossRefGoogle Scholar
  17. 17.
    Wang J, Cao J, Ji S, Park JH (2017) Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J Supercomput 73(7):3277.  https://doi.org/10.1007/s11227-016-1947-9 CrossRefGoogle Scholar
  18. 18.
    Neamatollahi P, Naghibzadeh M (2018) Distributed unequal clustering algorithm in large-scale wireless sensor networks using fuzzy logic. J Supercomput 74(6):2329.  https://doi.org/10.1007/s11227-018-2261-5 CrossRefGoogle Scholar
  19. 19.
    Nisha UN, Basha AM (2018) Triangular fuzzy-based spectral clustering for energy-efficient routing in wireless sensor network. J Supercomput.  https://doi.org/10.1007/s11227-018-2357-y CrossRefGoogle Scholar
  20. 20.
    Toloueiashtian M, Motameni H (2018) A new clustering approach in wireless sensor networks using fuzzy system. J Supercomput 74(2):717CrossRefGoogle Scholar
  21. 21.
    Jain S, Shah RC, Brunette W, Borriello G, Roy S (2006) Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob Netw Appl 11(3):327.  https://doi.org/10.1007/s11036-006-5186-9 CrossRefGoogle Scholar
  22. 22.
    Luo J, Hubaux J (2005) Joint mobility and routing for lifetime elongation in wireless sensor networks, In: 2005 IEEE Symposium on INFOCOM 2005. FL, USA, Miami, pp 30–37Google Scholar
  23. 23.
    Luo J, Hubaux J (2010) Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility. IEEE/ACM Trans Netw 18(3):871.  https://doi.org/10.1109/TNET.2009.2033472 CrossRefGoogle Scholar
  24. 24.
    Yanzhong Bi JMNLIK, Sun Limin, Chen C (2007) Hums: An autonomous moving strategy for mobile sinks in data-gathering sensor networks. EURASIP J Wirel Commun Netw 2007(3):327.  https://doi.org/10.1155/2007/64574 CrossRefGoogle Scholar
  25. 25.
    Marta M, Cardei M (2009) Improved sensor network lifetime with multiple mobile sinks. Pervasive Mob Comput 5(5):542.  https://doi.org/10.1016/j.pmcj.2009.01.001 CrossRefGoogle Scholar
  26. 26.
    Konstantopoulos C, Pantziou G, Gavalas D, Mpitziopoulos A, Mamalis B (2012) A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Trans Parallel Distrib Syst 23(5):809CrossRefGoogle Scholar
  27. 27.
    Maia G, Guidoni DL, Viana AC, Aquino AL, Mini RA, Loureiro AA (2013) A distributed data storage protocol for heterogeneous wireless sensor networks with mobile sinks. Ad Hoc Netw 11(5):1588.  https://doi.org/10.1016/j.adhoc.2013.01.004 CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Liu S, Yang Y, Bai Y (2018) A link-adding strategy for improving robustness and traffic capacity in large-scale wireless sensor networks. Clust Comput.  https://doi.org/10.1007/s10586-018-2467-6 CrossRefGoogle Scholar
  29. 29.
    Luo H, Ye F, Cheng J, Lu S, Zhang L (2005) Ttdd: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Netw 11(1):161.  https://doi.org/10.1007/s11276-004-4753-x CrossRefGoogle Scholar
  30. 30.
    Thanigaivelu K, Mururgan K (2012) Grid-based clustering with predefined path mobility for mobile sink data collection to extend network lifetime in wireless sensor network. IETE Tech Rev 29(2):133CrossRefGoogle Scholar
  31. 31.
    Khan AW, Abdullah AH, Razzaque MA, Bangash JI, Altameem A (2015) Vgdd: A virtual grid based data dissemination scheme for wireless sensor networks with mobile sink. Int J Distrib Sens Netw 2015(1):1Google Scholar
  32. 32.
    Khan AW, Abdullah AH, Razzaque MA, Bangash JI (2015) Vgdra: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sens J 15(1):526.  https://doi.org/10.1109/JSEN.2014.2347137 CrossRefGoogle Scholar
  33. 33.
    Majma MR, Almassi S, Shokrzadeh H (2016) Sgdd: Self-managed grid-based data dissemination protocol for mobile sink in wireless sensor network. Int J Commun Syst 29(5):959.  https://doi.org/10.1002/dac.3006 CrossRefGoogle Scholar
  34. 34.
    Singh SK, Kumar P, Singh JP (2018) An energy efficient protocol to mitigate hot spot problem using unequal clustering in wsn. Wireless Pers Commun 101(2):799.  https://doi.org/10.1007/s11277-018-5716-3 CrossRefGoogle Scholar
  35. 35.
    Prince B, Kumar P, Singh MP, Singh JP (2016) An energy efficient uneven grid clustering based routing protocol for wireless sensor networks. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp 1580–1584Google Scholar
  36. 36.
    Singh SK, Kumar P, Singh JP (2016) An energy efficient Odd-Even round number based data collection using mules in WSNs, In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp 1255–1259.  https://doi.org/10.1109/WiSPNET.2016.7566337
  37. 37.
    Hojjati SH, Ebrahimzadeh A, Andargoli SMH, Najimi M (2017) Energy efficient cooperative spectrum sensing in wireless multi-antenna sensor network. Wireless Netw 23(2):567.  https://doi.org/10.1007/s11276-015-1175-x CrossRefGoogle Scholar
  38. 38.
    Yu Y, Krishnamachari B, Prasanna VK (2004) Energy-latency tradeoffs for data gathering in wireless sensor networks, In: IEEE INFOCOM 2004, vol 1, p 255.  https://doi.org/10.1109/INFCOM.2004.1354498
  39. 39.
    Chakrabarti A, Sabharwal A, Aazhang B (2003) Using predictable observer mobility for power efficient design of sensor networks, In: Proceedings of the 2nd International Conference on Information Processing in Sensor Networks (Springer, Berlin), IPSN’03, pp 129–145. http://dl.acm.org/citation.cfm?id=1765991.1766001 CrossRefGoogle Scholar
  40. 40.
    Lotfinezhad M, Liang B, Sousa ES (2008) Adaptive cluster-based data collection in sensor networks with direct sink access. IEEE Trans Mob Comput 7(7):884.  https://doi.org/10.1109/TMC.2007.70769 CrossRefGoogle Scholar
  41. 41.
    Di Francesco M, Das SK, Anastasi G (2011) Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans Sens Netw 8(1):7:1.  https://doi.org/10.1145/1993042.1993049 CrossRefGoogle Scholar
  42. 42.
    Gu Y, Bozdağ D, Brewer RW, Ekici E (2006) Data harvesting with mobile elements in wireless sensor networks. Comput Netw 50(17):3449CrossRefGoogle Scholar
  43. 43.
    Afsar MM, Tayarani-N MH (2014) Clustering in sensor networks: a literature survey. J Netw Comput Appl 46:198CrossRefGoogle Scholar
  44. 44.
    Alsalih W, Hassanein H, Akl S (2010) Placement of multiple mobile data collectors in wireless sensor networks. Ad Hoc Netw 8(4):378.  https://doi.org/10.1016/j.adhoc.2009.08.007 CrossRefGoogle Scholar
  45. 45.
    Anastasi G, Conti M, Di Francesco M (2009) Reliable and energy-efficient data collection in sparse sensor networks with mobile elements. Perform Eval 66(12):791.  https://doi.org/10.1016/j.peva.2009.08.005 CrossRefGoogle Scholar
  46. 46.
    Jannu S, Jana PK (2015) A grid based clustering and routing algorithm for solving hot spot problem in wireless sensor networks. Wirel Netw 22:1–16CrossRefGoogle Scholar
  47. 47.
    Yu J, Qi Y, Wang G, Gu X (2012) A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU—Int J Electron Commun 66(1):54.  https://doi.org/10.1016/j.aeue.2011.05.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of Technology PatnaPatnaIndia
  2. 2.School of Computer Science and EngineeringVIT-AP UniversityAmaravatiIndia

Personalised recommendations