Advertisement

QoS-enabled TCP for software-defined networks: a combined scheduler-per-node approach

  • Yousef DarmaniEmail author
  • Mehrdad Sangelaji
Article
  • 26 Downloads

Abstract

Software-defined network (SDN) can ease the implementation of QoS concept by introducing a flexible and manageable mechanism to overcome the TCP pacing in the network and data centers which have burst traffics. SDN’s flexible structure lets the network manager control the resources while the traffic condition is changed. Therefore, it is possible to adopt an application flow rate based on its dynamic parameters such as delay and throughput. This paper studies a new dynamic QoS mechanism for SDNs. This mechanism improves the performance of TCP-based network traffic in the per-node model, compared with the classical end-to-end approach. In overall, we focused on two ideas: First, we alter the end-to-end holistic view of the TCP on per-node behavior. Second, we take advantage of a two-segment scheduler model. As a result, we are aware of congestion in the entire network nodes and are able to make a reaction to obtain the requested QoS. Simulation results show the effectiveness of the developed model.

Keywords

SDN QoS Data center End-to-end QoS provisioning OpenFlow 

Notes

References

  1. 1.
    Ceronni W, Gharbaoui M, Martini B (2015) Cross-layer resource orchestration for cloud service delivery: a seamless SDN approach. Comput Netw 87:16–32.  https://doi.org/10.1016/j.comnet.2015.05.008 CrossRefGoogle Scholar
  2. 2.
    Gharbaoui M, Martini B, Adami D, Giordano S, Castoldi P (2016) Cloud and network orchestration in SDN data centers: design principles and performance evaluation. Comput Netw 108:279–295.  https://doi.org/10.1016/j.comnet.2016.08.029 CrossRefGoogle Scholar
  3. 3.
    Koulouzisa S, Bellouma ASZ, Bubak MT, Zhaoa Z, Živkovića M, de Laata CTAM (2016) SDN-aware federation of distributed data. Future Gener Comput Syst 56:64–76.  https://doi.org/10.1016/j.future.2015.09.032 CrossRefGoogle Scholar
  4. 4.
    Gomes RL, Bittencourt LF, Madeira ERM, Cerqueira E, Gerla M (2016) Bandwidth-aware allocation of resilient virtual software defined networks. Comput Netw 100:179–194.  https://doi.org/10.1016/j.comnet.2016.02.024 CrossRefGoogle Scholar
  5. 5.
    McKeown N, Anderson T, Balakrishnan H (2008) OpenFlow: enabling innovation in campus networks. SIGCOMM Comput Commun Rev 38:68–74CrossRefGoogle Scholar
  6. 6.
    Zhaoa J, Lia F, Rena D, Hua J, Yaob Q, Lib W (2016) An intelligent inter-domain routing scheme under the consideration of diffserv QoS and energy saving in multi-domain software-defined flexible optical networks. Opt Commun 366:229–240.  https://doi.org/10.1016/j.optcom.2015.12.041 CrossRefGoogle Scholar
  7. 7.
    Boeroa L, Cello M, Garibottoa C, Marchesea M, Mongellic M (2016) BeaQoS: load balancing and deadline management of queues in an OpenFlow SDN switch. Comput Netw 106:161–170.  https://doi.org/10.1016/j.comnet.2016.06.025 CrossRefGoogle Scholar
  8. 8.
    Gomes RL, Bittencourtb LF, Madeirab ERM, Cerqueira E, Gerlaa M (2016) A combined energy-bandwidth approach to allocate resilient virtual software defined networks. J Netw Comput Appl 69:98–106.  https://doi.org/10.1016/j.jnca.2016.02.024 CrossRefGoogle Scholar
  9. 9.
    Durner R, Blenk A, Kellerer W (2015) Performance study of dynamic QoS management for OpenFlow-enabled SDN switches. In: IEEE 23rd International Symposium on Quality of Service (IWQoS).  https://doi.org/10.1109/iwqos.2015.7404730
  10. 10.
    Luoa M, Zengb Y, Lib J, Choua W (2015) An adaptive multi-path computation framework for centrally controlled networks. Comput Netw 83:30–44.  https://doi.org/10.1016/j.comnet.2015.02.004 CrossRefGoogle Scholar
  11. 11.
    Haiyan M, Jinyao Y, Georgopoulos P, Plattner B (2016) Towards SDN based queuing delay estimation. China Commun 13(3):27–36.  https://doi.org/10.1109/CC.2016.7445500 CrossRefGoogle Scholar
  12. 12.
    Zhou H, Wu C, Gao W, Jiang M (2015) Improving QoS in SDN with lossless multi-domain reconfigurations. In: 23rd International Symposium on Quality of Service (IWQoS), PortlandGoogle Scholar
  13. 13.
    Azizi M, Benaini R, Mamoun MB (2015) Delay measurement in openflow-enabled MPLS-TP network. Modern Appl Sci 9(3):90–101.  https://doi.org/10.5539/mas.v9n3p90 CrossRefGoogle Scholar
  14. 14.
    Lin S-C, Wang P, Luo M (2016) Jointly optimized QoS-aware virtualization and routing in software defined networks. Comput Netw 96:69–78.  https://doi.org/10.1016/j.comnet.2015.08.003 CrossRefGoogle Scholar
  15. 15.
    Tso FP, Jouet S, Dimitrios P, Pezaros B (2016) Network and server resource management strategies for data centre infrastructures: a survey. Comput Netw 106:209–225.  https://doi.org/10.1016/j.comnet.2016.07.002 CrossRefGoogle Scholar
  16. 16.
    Jararweha Y, Al-Ayyouba M, Darabseha A, Benkhelifab E, Voukc M, Rindosd A (2016) Software defined cloud: survey, system and evaluation. Future Gener Comput Syst 58:56–74.  https://doi.org/10.1016/j.future.2015.10.015 CrossRefGoogle Scholar
  17. 17.
    Lucrezia Francesco, Marchetto Guido, Risso Fulvio, Santuari Michele, Gerola Matteo (2017) A proposal for end-to-end QoS provisioning in software-defined networks. Int J Electr Comput Eng (IJECE) 7(4):2261–2277.  https://doi.org/10.11591/ijece.v7i4 CrossRefGoogle Scholar
  18. 18.
    Sheu J-P, Chen Y-C (2017) A scalable and bandwidth-efficient multicast algorithm based on segment routing in software-defined networking. In: 2017 IEEE International Conference on Communications (ICC), Paris, France.  https://doi.org/10.1109/icc.2017.7997197
  19. 19.
    Amigo I, Sena GG, Chami M, Belzarena P (2018) An SDN-based approach for QoS and reliability in overlay networks. In: 2018 Network Traffic Measurement and Analysis Conference (TMA), pp 1-2.  https://doi.org/10.23919/tma.2018.8506581
  20. 20.
    Dutra DLC, Bagaa M, Taleb T, Samdanis K (2017) Ensuring end-to-end QoS based on multi-paths routing using SDN technology. In: GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, Singapore.  https://doi.org/10.1109/glocom.2017.8254076
  21. 21.
    Lee M-C, Sheu J-P (2016) An efficient routing algorithm based on segment routing in software-defined networking. Comput Netw 103:44–55.  https://doi.org/10.1016/j.comnet.2016.03.017 CrossRefGoogle Scholar
  22. 22.
    Ghobadi M (2013) TCP adaptation framework in data centers. Doctor of Philosophy, Graduate Department of Computer Science, University of TorontoGoogle Scholar
  23. 23.
    Gao S, Zeng Y, Luo H, Zhang H (2016) Scalable control plane for intra-domain communication in software defined information centric networking. Future Gener Comput Syst 56:110–120.  https://doi.org/10.1016/j.future.2015.10.017 CrossRefGoogle Scholar
  24. 24.
    Manisekaran SV, Venkatesan R (2016) An analysis of software-defined routing approach for wireless sensor networks. Comput Electr Eng 56:456–467.  https://doi.org/10.1016/j.compeleceng.2016.06.017 CrossRefGoogle Scholar
  25. 25.
    Azodolmolky S, Nejabati R, Pazouki M, Wieder P, Yahyapour R, Simeonidou D (2013) An analytical model for software defined networking: a network calculus-based approach. In: IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, pp 1397–1402Google Scholar
  26. 26.
    Cardosoa KV, Correa SL, de Rezendeb JF, de Silvaa BS, de Melloa MOMC, Cruza MA (2016) Using traffic filtering rules and OpenFlow devices for transparent flow switching and automatic dynamic-circuit creation in hybrid networks. J Syst Softw 117:113–128.  https://doi.org/10.1016/j.jss.2016.02.019 CrossRefGoogle Scholar
  27. 27.
    Hou Y, Li H, Liu Y, Qiua Y, Jic Y (2016) OpenFlow-based adaptive adjustment of optical path resources in dynamic optical networks. Opt Switch Netw 22:105–116.  https://doi.org/10.1016/j.osn.2016.07.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentK. N. Toosi University of TechnologyTehranIran

Personalised recommendations