Advertisement

Inapproximability results and suboptimal algorithms for minimum delay cache placement in campus networks with content-centric network routers

  • Xiaojun ZhuEmail author
  • Bing Chen
  • Muhui Shen
  • Yanchao Zhao
Article
  • 27 Downloads

Abstract

We consider the cache placement problem in campus networks where routers have heterogeneous cache capacity and the objective is to minimize the total delay of all requests. We prove that the problem is NP-hard to approximate to within any factor less than \(n/m^{\epsilon }+\hbox{poly}(m)\), where n is the number of routers, m is the number of contents, \(\epsilon\) is any fixed positive constant, and \(\hbox{poly}(m)\) is any polynomial function of m. We propose (exponential-time) exact algorithms based on integer linear programming and propose techniques to decompose the network and remove redundant variables for speeding up the computation. By relaxing the integer linear programs, we also propose three (polynomial-time) heuristic algorithms. Numerical results show that the proposed algorithms give a shorter delay than existing cache decision algorithms for content-centric networks.

Keywords

Inapproximability In-network caching Cache decision strategy Content-centric network 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61502232, 61602238, 61672283), the Joint Project of Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China (20175552039), the Key Project of Jiangsu Research Program (BK20160805), and the China Postdoctoral Science Foundation (2016M590451).

References

  1. 1.
    Cisco, Vni global fixed and mobile internet traffic forecasts. http://www.cisco.com. Accessed 16 July 2018
  2. 2.
    Xylomenos G, Ververidis CN, Siris VA, Fotiou N, Tsilopoulos C, Vasilakos X, Katsaros KV, Polyzos GC (2014) A survey of information-centric networking research. IEEE Commun Surv Tutor 16(2):1024–1049CrossRefGoogle Scholar
  3. 3.
    Jacobson V, Smetters DK, Thornton JD, Plass MF, Briggs N, Braynard R (2012) Networking named content. Commun ACM 55(1):117–124CrossRefGoogle Scholar
  4. 4.
    Amokrane A, Langar R, Boutaba R, Pujolle G (2015) Flow-based management for energy efficient campus networks. IEEE Trans Netwo Serv Manag 12(4):565–579CrossRefGoogle Scholar
  5. 5.
    Poularakis K, Tassiulas L (2016) On the complexity of optimal content placement in hierarchical caching networks. IEEE Trans Commun 64(5):2092–2103CrossRefGoogle Scholar
  6. 6.
    Josilo S, Pacifici V, Dan G (2017) Distributed algorithms for content placement in hierarchical cache networks. Comput Netw 125:160–171CrossRefGoogle Scholar
  7. 7.
    Ming Z, Xu M, Wang D (2012) Age-based cooperative caching in information-centric networks. In: Proceedings of INFOCOM WKSHPS’12Google Scholar
  8. 8.
    Psaras I, Chai WK, Pavlou G (2012) Probabilistic in-network caching for information-centric networks. In: Proceedings of ICN’12Google Scholar
  9. 9.
    Chai WK, He D, Psaras I, Pavlou G (2013) Cache less for more in information-centric networks (extended version). Comput Commun 36(7):758–770CrossRefGoogle Scholar
  10. 10.
    Psaras I, Chai WK, Pavlou G (2014) In-network cache management and resource allocation for information-centric networks. IEEE Trans Parallel Distrib Syst 25(11):2920–2931CrossRefGoogle Scholar
  11. 11.
    Laoutaris N, Che H, Stavrakakis I (2006) The LCD interconnection of LRU caches and its analysis. Perform Eval 63(7):609–634CrossRefGoogle Scholar
  12. 12.
    Abdullahi I, Arif S, Hassan S (2015) Survey on caching approaches in information centric networking. J Netw Comput Appl 56(C):48–59CrossRefGoogle Scholar
  13. 13.
    Che H, Tung Y, Wang Z (2002) Hierarchical web caching systems: modeling, design and experimental results. IEEE J Sel Areas Commun 20(7):1305–1314CrossRefGoogle Scholar
  14. 14.
    Karamchandani N, Niesen U, Maddah-Ali MA, Diggavi SN (2016) Hierarchical coded caching. IEEE Trans Inf Theory 62(6):3212–3229MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sun Y, Fayaz SK, Guo Y, Sekar V, Jin Y, Kâafar MA, Uhlig S (2014) Trace-driven analysis of ICN caching algorithms on video-on-demand workloads. In: Proceedings of CoNEXT’10Google Scholar
  16. 16.
    Tyson G, Kaune S, Miles S, El-khatib Y, Mauthe A, Taweel A (2012) A trace-driven analysis of caching in content-centric networks. In: Proceedings of ICCCN’12Google Scholar
  17. 17.
    Rossi D, Rossini G (2012) On sizing CCN content stores by exploiting topological information. In: Proceedings of INFOCOM WKSHPS’12Google Scholar
  18. 18.
    Xu Y, Li Y, Lin T, Wang Z, Niu W, Tang H, Ci S (2014) A novel cache size optimization scheme based on manifold learning in content centric networking. J Netw Comput Appl 37:273–281CrossRefGoogle Scholar
  19. 19.
    Wang Y, Li Z, Tyson G, Uhlig S, Xie G (2016) Design and evaluation of the optimal cache allocation for content-centric networking. IEEE Trans Comput 65(1):95–107MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Abani N, Braun T, Gerla M (2017) Proactive caching with mobility prediction under uncertainty in information-centric networks. In: Proceedings of ICNGoogle Scholar
  21. 21.
    Zhang M, Luo H, Zhang H (2015) A survey of caching mechanisms in information-centric networking. IEEE Commun Surv Tutor 17(3):1473–1499CrossRefGoogle Scholar
  22. 22.
    Seetharam A (2017) On caching and routing in information-centric networks. IEEE Commun Mag 99:1–6Google Scholar
  23. 23.
    Shen M, Chen B, Zhu X, Zhao Y (2016) Towards optimal cache decision for campus networks with content-centric network routers. In: Proceedings of ISCC’16Google Scholar
  24. 24.
    McKeown N, Anderson T, Balakrishnan H, Parulkar GM, Peterson LL, Rexford J, Shenker S, Turner JS (2008) Openflow: enabling innovation in campus networks. Comput Commun Rev 38(2):69–74CrossRefGoogle Scholar
  25. 25.
    Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., San FranciscozbMATHGoogle Scholar
  26. 26.
    Zhu X, Li Q, Mao W, Chen G (2014) Online vector scheduling and generalized load balancing. J Parallel Distrib Comput 74(4):2304–2309CrossRefzbMATHGoogle Scholar
  27. 27.
    lp solve. http://lpsolve.sourceforge.net/5.5/. Accessed 7 Jan 2016

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations