The Journal of Supercomputing

, Volume 75, Issue 3, pp 1565–1579 | Cite as

Extended attribute profiles on GPU applied to hyperspectral image classification

  • Pedro G. Bascoy
  • Pablo Quesada-Barriuso
  • Dora B. HerasEmail author
  • Francisco Argüello
  • Begüm Demir
  • Lorenzo Bruzzone


Extended profiles are an important technique for modelling the spatial information of hyperspectral images at different levels of detail. They are used extensively as a preprocessing stage, especially in classification schemes. In particular, attribute profiles, based on the application of morphological attribute filters to the connected components of the image, have been shown to provide very good results. In this paper we present a parallel implementation of the attribute profiles in CUDA for multispectral and hyperspectral imagery considering the attributes area and standard deviation. The profile computation is based on the max-tree approach but without building the tree itself. Instead, a matrix-based data structure is used along with a recursive flooding (component merging) and filter process. Additionally, a previous feature extraction stage based on wavelets is applied to the hyperspectral image in order to extract the most valuable spectral information, reducing the size of the resulting profile. This scheme efficiently exploits the thousands of available threads on the GPU, obtaining a considerable reduction in execution time as compared to the OpenMP CPU implementation.


Remote sensing Hyperspectral Attribute profiles Supervised classification Real-time GPU 



This work was supported in part by the Consellería de Cultura, Educación e Ordenación Universitaria [Grant numbers GRC2014/008 and ED431G/08] and Ministry of Education, Culture and Sport, Government of Spain [Grant number TIN2016-76373-P]. Both are co-funded by the European Regional Development Fund (ERDF).


  1. 1.
    Breen EJ, Jones R (1996) Attribute openings, thinnings, and granulometries. Comput Vis Image Underst 64(3):377–389CrossRefGoogle Scholar
  2. 2.
    Carlinet E, Géraud T (2013) A comparison of many max-tree computation algorithms. In: Hendriks CLL, Borgefors G, Strand R (eds) Mathematical morphology and its applications to signal and image processing. Springer, Berlin, pp 73–85CrossRefGoogle Scholar
  3. 3.
    Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27Google Scholar
  4. 4.
    Darbon J, Akgül CB (2005) An efficient algorithm for attribute openings and closings. In: 2005 13th European Signal Processing Conference, pp 1–4Google Scholar
  5. 5.
    Ghamisi P, Mura MD, Benediktsson JA (2015) A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Trans Geosci Remote Sens 53(5):2335–2353CrossRefGoogle Scholar
  6. 6.
    Ghamisi P, Maggiori E, Li S, Souza R, Tarabalka Y, Moser G, De Giorgi A, Fang L, Chen Y, Chi M, Serpico S, Benediktsson J (2018) New frontiers in spectral–spatial hyperspectral image classification: the latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci Remote Sens Mag 6(3):10–43CrossRefGoogle Scholar
  7. 7.
    Ma Y, Chen L, Liu P, Lu K (2016) Parallel programing templates for remote sensing image processing on GPU architectures: design and implementation. Computing 98(1):7–33MathSciNetCrossRefGoogle Scholar
  8. 8.
    Matas P, Dokládalová E, Akil M, Grandpierre T, Najman L, Poupa M, Georgiev V (2008) Parallel algorithm for concurrent computation of connected component tree. Springer, Berlin, pp 230–241Google Scholar
  9. 9.
    Meijster A, Wilkinson MHF (2002) A comparison of algorithms for connected set openings and closings. IEEE Trans Pattern Anal Mach Intell 24(4):484–494CrossRefGoogle Scholar
  10. 10.
    Moschini U, Meijster A, Wilkinson MHF (2018) A hybrid shared-memory parallel max-tree algorithm for extreme dynamic-range images. IEEE Trans Pattern Anal Mach Intell 40(3):513–526CrossRefGoogle Scholar
  11. 11.
    Mura MD, Benediktsson JA, Waske B, Bruzzone L (2010) Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens 48(10):3747–3762CrossRefGoogle Scholar
  12. 12.
    Oliveira V, de Alencar Lotufo R (2010) A study on connected components labeling algorithms using GPUs. In: Proceedings: 23rd SIBGRAPI Conference on Graphics, Patterns and ImagesGoogle Scholar
  13. 13.
    Plaza A, Du Q, Chang Y, King RL (2011) High performance computing for hyperspectral remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 4(3):528–544CrossRefGoogle Scholar
  14. 14.
    Quesada-Barriuso P, Argüello F, Heras DB, Benediktsson JA (2015) Wavelet-based classification of hyperspectral images using extended morphological profiles on graphics processing units. IEEE J Select Top Appl Earth Obs Remote Sens 8(6):2962–2970CrossRefGoogle Scholar
  15. 15.
    Quesada-Barriuso P, Heras DB, Argüello F, Demir B (2018) GPU computation of attribute profiles for remote sensing image classification. In: Aguiar JV (ed) Proceedings of the 18th International Conference on Computational and Mathematical Methods in Science and EngineeringGoogle Scholar
  16. 16.
    Salembier P, Oliveras A, Garrido L (1998) Antiextensive connected operators for image and sequence processing. IEEE Trans Image Process 7(4):555–570CrossRefGoogle Scholar
  17. 17.
    Tarjan RE (1975) Efficiency of a good but not linear set union algorithm. J ACM 22(2):215–225MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vincent L (1993) Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, pp 22–27Google Scholar
  19. 19.
    Wilkinson MHF, Roerdink JBTM (2000) Fast morphological attribute operations using Tarjan’s union-find algorithm. Springer, Boston, pp 311–320zbMATHGoogle Scholar
  20. 20.
    Wilkinson MHF, Gao H, Hesselink WH, Jonker JE, Meijster A (2008) Concurrent computation of attribute filters on shared memory parallel machines. IEEE Trans Pattern Anal Mach Intell 30(10):1800–1813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pedro G. Bascoy
    • 1
  • Pablo Quesada-Barriuso
    • 1
  • Dora B. Heras
    • 1
    Email author
  • Francisco Argüello
    • 1
  • Begüm Demir
    • 2
  • Lorenzo Bruzzone
    • 3
  1. 1.Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany
  3. 3.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly

Personalised recommendations