Advertisement

The Journal of Supercomputing

, Volume 75, Issue 3, pp 1429–1442 | Cite as

A highly scalable parallel encoder version of the emergent JEM video encoder

  • O. López-GranadoEmail author
  • H. Migallón
  • M. Martínez-Rach
  • V. Galiano
  • M. P. Malumbres
  • Glenn Van Wallendael
Article
  • 47 Downloads

Abstract

In 2016, 73% of total Internet traffic came from video transmission and this percentage is expected to reach 82% by 2021. These figures show the importance of using video compression standards that maximize video quality while minimizing the necessary bandwidth. In 2013, the HEVC standard was released accounting for an approximate 50% bit rate saving compared to H.264/AVC while maintaining the same reconstruction quality. To address increases in video IP traffic, a new generation of video coding techniques is required that achieve higher compression rates. Compression improvements are being implemented in a software package known as the Joint Exploration Test Model. In this work, we present two parallel JEM model solutions specifically designed for distributed memory platforms for both All Intra and Random Access coding modes. The proposed parallel algorithms achieved high levels of efficiency, in particular for the All Intra mode. They also showed great scalability.

Keywords

JEM Video coding Parallel algorithms Multicore Performance 

References

  1. 1.
    Sullivan G, Ohm J, Han W, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1648–1667CrossRefGoogle Scholar
  2. 2.
    ITU-T, ISO/IEC JTC 1 (2012) Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012Google Scholar
  3. 3.
    Ohm J, Sullivan G, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards—including high efficiency video coding (hevc). IEEE Trans Circuits Syst Video Technol 22(12):1669–1684CrossRefGoogle Scholar
  4. 4.
    Cisco (2017) Cisco visual networking index: forecast and methodology, 2016–2021. Tech. rep. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html. Accessed 15 Jan 2017
  5. 5.
    Chen J, Alshina E, Sullivan GJ, Ohm JR, Boyce J (2017) Algorithm description of joint exploration test model 7. Technical Report JVET-G1001-v1Google Scholar
  6. 6.
    Alshina E, Alshin A, Choi K, Park M (2016) Performance of JEM 1 tools analysis. Tech. rep., JVET-B0044 3rd 2nd JVET Meeting, San DiegoGoogle Scholar
  7. 7.
    Schwarz H, Rudat C, Siekmann M, Bross B, Marpe D, Wiegand T (2016) Coding efficiency complexity analysis of JEM 1.0 coding tools for the random access configuration. Tech. rep., JVET-B0044 3rd 2nd JVET Meeting, San DiegoGoogle Scholar
  8. 8.
    Karczewicz M, Alshina E (2016) JVET AHG report: tool evaluation (AHG1). Tech. rep., Technical Report JVET-D0001Google Scholar
  9. 9.
    Grois D, Nguyen T, Marpe D (2018) Performance comparison of AV1, JEM, VP9, and HEVC encoders, p 10,396.  https://doi.org/10.1117/12.2283428
  10. 10.
    García-Lucas D, Cebrián-Márquez G, Díaz-Honrubia AJ, Cuenca P (2018) Acceleration of the integer motion estimation in JEM through pre-analysis techniques. J Supercomput.  https://doi.org/10.1007/s11227-018-2352-3
  11. 11.
    Sze V, Budagavi M, Sullivan G (2014) High efficiency video coding (HEVC). Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    (JVET), I.J.V.E.T. (2015) Algorithm description of joint exploratory test model (JEM). Tech. rep., First JVET meeting, GenevaGoogle Scholar
  13. 13.
    Chen J, Alshina E, Sullivan GJ, Ohm JR, Boyce J (2016) Algorithm description of joint exploration test model 3. Technical Report JVET-C1001Google Scholar
  14. 14.
    HEVC Reference Software. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.3/. Accessed 28 Feb 2015
  15. 15.
    Bjontegaard G (2001) Calculation of average PSNR differences between RD-curves. Tech. Rep. VCEG-M33, Video Coding Experts Group (VCEG), Austin (Texas)Google Scholar
  16. 16.
    Sjoberg R, Chen Y, Fujibayashi A, Hannuksela MM, Samuelsson J, Tan TK, Wang YK, Wenger S (2012) Overview of HEVC high-level syntax and reference picture management. IEEE Trans Circuits Syst Video Technol 22(12):1858–1870.  https://doi.org/10.1109/TCSVT.2012.2223052 CrossRefGoogle Scholar
  17. 17.
    GCC, the gnu compiler collection (2009–2012) Free Software Foundation, Inc. http://gcc.gnu.org
  18. 18.
    MPI Forum (2009) MPI: a message-passing interface standard. Version 2.2 (2009). http://www.mpi-forum.org. Accessed 15 Dec 2016

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Computer Architecture DepartmentMiguel Hernández UniversityElcheSpain
  2. 2.Multimedia LabGhent UniversityGhentBelgium

Personalised recommendations