Advertisement

The Journal of Supercomputing

, Volume 74, Issue 9, pp 4798–4816 | Cite as

Novel designs of full adder in quantum-dot cellular automata technology

  • Lei WangEmail author
  • Guangjun Xie
Article
  • 126 Downloads

Abstract

In the digital design area, quantum-dot cellular automata (QCA) has become a promising alternative to the CMOS technology. As a basic unit in digital arithmetic circuits, the full adder has been extensively studied in the development of QCA technology. This paper presents two novel full adder implementations using QCA, which outperform other designs with fewer cells, smaller areas, shorter latency and lower cost. The two full adders share many properties in common and differ only in cell numbers. Concretely speaking, a latency of 0.75 clock cycle, area of 0.01 μm2 and cost weighted 0.0056 is implemented using only 28 and 31 normal cells, respectively. To illustrate the superiority of our design in complex structures, ripple carry adder circuits of 4-bit, 8-bit and 16-bit size have been implemented using the proposed 1-bit full adder. Simulation results show that the proposed design also has good stability and scalability in different circuit size, resulting in significant improvements in terms of number of cells, area, cost compared to designs in other studies, while maintaining an equally well clock latency with the best previous one. The proposed designs in this paper have been functionally verified with the QCADesigner tool.

Keywords

Quantum-dot cellular automata Full adder Ripple carry adder Metrics 

Notes

Acknowledgements

The authors would like to acknowledge National Natural Science Foundation of China (No. 61271122).

References

  1. 1.
    Lent CST, Douglas P, Bernstein Gary H (1993) Quantum cellular automata. Nanotechnology 4:49–57CrossRefGoogle Scholar
  2. 2.
    Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557.  https://doi.org/10.1109/5.573740 CrossRefGoogle Scholar
  3. 3.
    Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science 277(5328):928–930CrossRefGoogle Scholar
  4. 4.
    Amlani I, Orlov AO, Kummamuru RK, Bernstein GH (2000) Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett 77(5):738–740CrossRefGoogle Scholar
  5. 5.
    Rumi Z, Walus K, Wei W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450.  https://doi.org/10.1109/TNANO.2004.834177 CrossRefGoogle Scholar
  6. 6.
    Navi K, Sayedsalehi S, Farazkish R, Azghadi MR (2010) Five-input majority gate, a new device for quantum-dot cellular automata. J Comput Theor Nanosci 7(8):1–8CrossRefGoogle Scholar
  7. 7.
    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRefGoogle Scholar
  8. 8.
    Gin A, Tougaw PD, Williams S (1999) An alternative geometry for quantum-dot cellular automata. J Appl Phys 85(12):8281–8286CrossRefGoogle Scholar
  9. 9.
    Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003, vol 462, pp 461–464Google Scholar
  10. 10.
    Hanninen I, Takala J (2007) Robust adders based on quantum-dot cellular automata. IEEE Int Conf Asap.  https://doi.org/10.1109/asap.2007.4459295 Google Scholar
  11. 11.
    Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50(Supplement C):35–43.  https://doi.org/10.1016/j.mejo.2016.02.004 CrossRefGoogle Scholar
  12. 12.
    Labrado C, Thapliyal H (2016) Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron Lett 52(6):464–465.  https://doi.org/10.1049/el.2015.3834 CrossRefGoogle Scholar
  13. 13.
    Seyedi S, Navimipour NJ (2018) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik Int J Light Electron Opt 158:243–256CrossRefzbMATHGoogle Scholar
  14. 14.
    Sayedsalehi SMMH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775CrossRefGoogle Scholar
  15. 15.
    Sarmadi S, Sayedsalehi S, Fartash M, Angizi S (2015) A structured ultra-dense QCA one-bit full-adder cell. Quantum Matter 4(1):125–130Google Scholar
  16. 16.
    Liu W, Lu L, Neill MO, Swartzlander EE (2011) Design rules for quantum-dot cellular automata. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 15–18 May 2011, pp 2361–2364.  https://doi.org/10.1109/iscas.2011.5938077
  17. 17.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31.  https://doi.org/10.1109/TNANO.2003.820815 CrossRefGoogle Scholar
  18. 18.
    Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383.  https://doi.org/10.1109/TNANO.2007.894839 CrossRefGoogle Scholar
  19. 19.
    Heikalabad SR, Asfestani MN, Hosseinzadeh M (2017) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput.  https://doi.org/10.1007/s11227-017-2206-4 Google Scholar
  20. 20.
    Hashemi S, Tehrani MA, Navi K (2012) An efficient quantum-dot cellular automata full-adder. Sci Res Essays 7(2):177–189Google Scholar
  21. 21.
    Navi K, Farazkish R, Sayedsalehi S, Rahimi Azghadi M (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826.  https://doi.org/10.1016/j.mejo.2010.07.003 CrossRefGoogle Scholar
  22. 22.
    Hänninen I, Takala J (2010) Binary adders on quantum-dot cellular automata. J Signal Process Syst 58(1):87–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic Science and Applied PhysicsHefei University of TechnologyHefeiChina

Personalised recommendations