Advertisement

The Journal of Supercomputing

, Volume 74, Issue 9, pp 4696–4716 | Cite as

A novel fault-tolerant multiplexer in quantum-dot cellular automata technology

  • Seyed-Sajad Ahmadpour
  • Mohammad MoslehEmail author
Article

Abstract

Quantum-dot cellular automaton (QCA) has emerged as one of the best alternatives to CMOS technology in nanoscale. In spite of the potential advantages of QCA technology over CMOS, QCA circuits often suffer from various types of manufacturing defects and are therefore prone to fault. Hence, the design of fault-tolerant circuits in QCA technology is considered a necessity. The implementation of multiplexer circuits in QCA technology has been of great interest to researchers due to its widespread use in memory circuits and ALUs. In most of the multiplexer circuits presented in QCA, the problem of fault-tolerant is ignored. In this paper, a novel fault-tolerant three-input majority gate is initially proposed. The proposed structure has been investigated against all kinds of cell omission, extra cell deposition, and cell displacement defects. The simulation results are verified by QCA Designer 2.0.3, and it showed that it is 100, 84.98, and 100% tolerant to single-cell omission, double-cell omission, and extra cell deposition, respectively. In addition, the proposed structure shows that it is robust against cell displacement defects. Moreover, physical investigations are provided in order to confirm the function of the proposed fault-tolerant structure. Finally, using the proposed structure, a novel single-layer 2:1 multiplexer is presented. The results of comparisons indicate that the proposed designs are more reliable than the existing designs. Furthermore, QCAPro power estimator tool is employed to estimate the energy dissipation of the proposed structure.

Keywords

Circuit design Nanotechnology Quantum-dot cellular automata (QCA) Majority gate Fault-tolerant Multiplexer 

References

  1. 1.
    Wilson M et al (2002) Nanotechnology: basic science and emerging technologies. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Toth G, Lent CS (1999) Quasiadiabatic switching for metal-island quantum-dot cellular automata. J Appl Phys 85(5):2977–2984CrossRefGoogle Scholar
  3. 3.
    Lent CS et al (1993) Quantum cellular automata. Nanotechnology 4(1):49CrossRefGoogle Scholar
  4. 4.
    Compano R, Molenkamp L, Paul D (2000) Roadmap for nanoelectronics. European Commission IST Programme, Future and Emerging TechnologiesGoogle Scholar
  5. 5.
    Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557CrossRefGoogle Scholar
  6. 6.
    Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16:1–9CrossRefzbMATHGoogle Scholar
  7. 7.
    Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74(5):1994–2005CrossRefGoogle Scholar
  8. 8.
    Safavi A, Mosleh M (2016) Presenting a new efficient QCA full adder based on suggested MV32 gate. Int J Nanosci Nanotechnol 12(1):55–69Google Scholar
  9. 9.
    Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90–104CrossRefGoogle Scholar
  10. 10.
    Bandani Sousan H-A, Mosleh M, Setayeshi S (2015) Designing and implementing a fast and robust full-adder in quantum-dot cellular automata (QCA) technology. J Adv Comput Res 6(1):27–45Google Scholar
  11. 11.
    Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRefGoogle Scholar
  12. 12.
    Navi K et al (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826CrossRefGoogle Scholar
  13. 13.
    Cho H, Swartzlander EE (2007) Adder designs and analyses for quantum-dot cellular automata. IEEE Trans Nanotechnol 6(3):374–383CrossRefGoogle Scholar
  14. 14.
    Faraji H, Mosleh M (2018) A fast wallace-based parallel multiplier in quantum-dot cellular automata. Int J Nano Dimens 9(1):68–78Google Scholar
  15. 15.
    Pudi V, Sridharan K (2013) Efficient design of Baugh-Wooley multiplier in quantum-dot cellular automata. In: 13th IEEE Conference on Nanotechnology (IEEE-NANO), 2013. IEEEGoogle Scholar
  16. 16.
    Kim S-W (2011) Design of parallel multipliers and dividers in quantum-dot cellular automataGoogle Scholar
  17. 17.
    Cho H, Swartzlander EE Jr (2009) Adder and multiplier design in quantum-dot cellular automata. IEEE Trans Comput 58(6):721–727MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cho H (2006) Adder and multiplier design and analysis in quantum-dot cellular automataGoogle Scholar
  19. 19.
    Sayedsalehi S et al (2015) Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf Sci 311:86–101MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kong I, Kim S-W, Swartzlander EE (2014) Design of Goldschmidt dividers with quantum-dot cellular automata. IEEE Trans Comput 63(10):2620–2625MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kong I, Swartzlander EE, Kim S-W (2009) Design of a Goldschmidt iterative divider for quantum-dot cellular automata. In: IEEE/ACM International Symposium on Nanoscale Architectures, 2009. NANOARCH’09. IEEEGoogle Scholar
  22. 22.
    Chaharlang J, Mosleh M (2017) An overview on RAM memories in QCA technology. Majlesi J Electr Eng 11(2):9Google Scholar
  23. 23.
    Sadoghifar A, Heikalabad SR (2018) A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys B 537:202–206CrossRefGoogle Scholar
  24. 24.
    Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B 512:91–99CrossRefGoogle Scholar
  25. 25.
    Heikalabad SR, Navin AH, Hosseinzadeh M (2016) Content addressable memory cell in quantum-dot cellular automata. Microelectron Eng 163:140–150CrossRefGoogle Scholar
  26. 26.
    Heikalabad SR et al (2015) Midpoint memory: a special memory structure for data-oriented models implementation. J Circuits Syst Comput 24(05):1550063CrossRefGoogle Scholar
  27. 27.
    Tahoori MB et al (2004) Defects and faults in quantum cellular automata at nano scale. In: VLSI Test Symposium, 2004. Proceedings. 22nd IEEE. IEEEGoogle Scholar
  28. 28.
    Momenzadeh M et al (2004) Quantum cellular automata: new defects and faults for new devices. In: Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International. IEEEGoogle Scholar
  29. 29.
    Huang J, Momenzadeh M, Lombardi F (2007) On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J Electron Test 23(2):163–174CrossRefGoogle Scholar
  30. 30.
    Sen B et al (2014) Efficient design of fault tolerant tiles in QCA. In: India Conference (INDICON), 2014 Annual IEEE. IEEEGoogle Scholar
  31. 31.
    Sen B et al (2016) On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron J 47:7–18CrossRefGoogle Scholar
  32. 32.
    Sen B et al (2016) Towards the design of hybrid QCA tiles targeting high fault tolerance. J Comput Electron 15(2):429–445CrossRefGoogle Scholar
  33. 33.
    Du H et al (2016) Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15(4):1484–1497CrossRefGoogle Scholar
  34. 34.
    Sun M et al (2018) The fundamental primitives with fault-tolerance in quantum-dot cellular automata. J Electron Test 34(2):109–122CrossRefGoogle Scholar
  35. 35.
    Wang X et al (2018) Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata. J Semicond 39(8):085001-1–085001-8Google Scholar
  36. 36.
    Farazkish R (2018) Novel efficient fault-tolerant full-adder for quantum-dot cellular automata. Int J Nano Dimens 9(1):58–67Google Scholar
  37. 37.
    Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRefGoogle Scholar
  38. 38.
    Walus K et al (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRefGoogle Scholar
  39. 39.
    Halloun IA, Hestenes D (1985) Common sense concepts about motion. Am J Phys 53(11):1056–1065CrossRefGoogle Scholar
  40. 40.
    McDermott LC (1984) Research on conceptual understanding in mechanics. Phys Today 37:24–32CrossRefGoogle Scholar
  41. 41.
    Halliday D, Resnick R, Walker J (2011) Fundamentals of physics, 9th edn. Wiley, Hoboken, NJzbMATHGoogle Scholar
  42. 42.
    Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling QCA defects at molecular-level in combinational circuits. In: 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005. IEEEGoogle Scholar
  43. 43.
    Srivastava S et al (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS). IEEEGoogle Scholar
  44. 44.
    Ahmad F (2018) An optimal design of QCA based 2n: 1/1: 2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocess Microsyst 56:64–75CrossRefGoogle Scholar
  45. 45.
    Rashidi H, Rezai A, Soltany S (2016) High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron 15(3):968–981CrossRefGoogle Scholar
  46. 46.
    Chabi AM et al (2014) Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. International scholarly research noticesGoogle Scholar
  47. 47.
    Sen B et al (2013) Multilayer design of QCA multiplexer. In: India Conference (INDICON), 2013 Annual IEEE. IEEEGoogle Scholar
  48. 48.
    Roohi A et al (2011) A novel architecture for quantum-dot cellular automata multiplexer. Int J Comput Sci Issues 8(1):55–60Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering, Dezfoul BranchIslamic Azad UniversityDezfoulIran

Personalised recommendations