Advertisement

The Journal of Supercomputing

, Volume 74, Issue 7, pp 3264–3277 | Cite as

Simulation of an inelastic dispersive phenomenon: stimulated Brillouin scattering in a single-mode fiber segment through parallelism

  • R. Sanchez-Lara
  • J. A. Trejo-Sanchez
  • J. L. Lopez-MartinezEmail author
  • J. A. Alvarez-Chavez
Article
  • 115 Downloads

Abstract

Stimulated Brillouin scattering (SBS) is one of the most important nonlinear phenomena because it limits the maximum transmission power in modern optical communication systems. Unfortunately, the simulation of SBS is time-consuming, since it requires estimating the solutions for a set of complex differential equations that describe this phenomenon. In this paper, a novel high-performance computing model intended to analyze the main dispersive effects present in modern fiber communication systems is proposed. A full optical characterization of the simulation results is included and compared with the efficiency and improved speed of our parallel implementation versus a previous sequential model for SBS. Also, an evaluation of the throughput of our parallel implementation using both central processing unit multi-core and graphics processing unit is presented. Results show that parallelism increases the performance of the simulation tenfold.

Keywords

Computer simulation Optical fiber communication GPU programming Parallel architectures Parallel programming Performance analysis 

Notes

Acknowledgements

The authors would like to express their gratitude to CONACYT-CIMAT, UNACAR, UADY, CIITEC-IPN and IPN, all from MEXICO.

References

  1. 1.
    Agrawal GP (2013) Nonlinear fiber optics. Academic Press, LondonzbMATHGoogle Scholar
  2. 2.
    Rasheed I, Abdullah M, Mehmood S, Chaudhary M (2012) Analyzing the non-linear effects at various power levels and channel counts on the performance of DWDM based optical fiber communication system. In: International Conference Emerging Technologies, pp 1–5Google Scholar
  3. 3.
    Mizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K (2015) Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep 5(1):11388CrossRefGoogle Scholar
  4. 4.
    Xu Y, Ren M, Lu Y, Lu P, Lu P, Bao X, Wang L, Messaddeq Y, LaRochelle S (2016) Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt Lett 41(6):1138–1141CrossRefGoogle Scholar
  5. 5.
    Li B, Luo L, Yu Y, Soga K, Yan J (2017) Dynamic strain measurement using small gain stimulated brillouin scattering in STFT-BOTDR. IEEE Sens J 17(9):2718–2724CrossRefGoogle Scholar
  6. 6.
    Preussler S, Schneider T (2015) Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Opt Eng 55(3):031110CrossRefGoogle Scholar
  7. 7.
    Song K, Hotate K, Zou W, He Z (2017) Applications of brillouin dynamic grating to distributed fiber sensors. J Lightwave Technol 35(16):3268–3280CrossRefGoogle Scholar
  8. 8.
    Garmire E (2017) Perspectives on stimulated Brillouin scattering. New J Phys 19(1):1–11CrossRefGoogle Scholar
  9. 9.
    Tithi F, Islam M, Majumder S (2012) Compensation of SBS using cross-phase modulation in WDM transmission system. In: 7th International Conference on Electrical and Computer Engineering (ICECE), pp 39–42Google Scholar
  10. 10.
    Mishra R, Shukla N, Dwivedi C (2016) A comparative performance analysis and effects of SBS and SRS using OPTISYSTEM. Int J Eng Sci Comput 6(6):7120–7125Google Scholar
  11. 11.
    Sanchez-Lara R, Alvarez-Chavez J, Mendez-Martinez F, De la Cruz-May L, Perez-Sanchez G (2015) Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment. Laser Phys 25(3):1–5CrossRefGoogle Scholar
  12. 12.
    Ke WW, Wang XJ, Tang X (2014) Stimulated Brillouin scattering model in multi-mode fiber lasers. IEEE J Sel Top Quant 20(5):305–314CrossRefGoogle Scholar
  13. 13.
    Song KY (2017) Stimulated Brillouin scattering in few-mode fibers and its applications. In: IEEE Photonics Conference (IPC), pp 693–693Google Scholar
  14. 14.
    Stojanovic N, Stojanovic D (2014) High performance processing and analysis of geospatial data using CUDA on GPU. Adv Electr Comput Eng 14:109CrossRefGoogle Scholar
  15. 15.
    Yam-Uicab R, Lopez-Martinez JL, Trejo-Sanchez JA, Hidalgo-Silva H, Gonzalez-Segura S (2017) A fast Hough transform algorithm for straight lines detection in an image using GPU parallel computing with CUDA-C. J Supercomput 73(11):4823–4842CrossRefGoogle Scholar
  16. 16.
    Khaled A, Gaid M, Pernet N, Simon D (2014) Fast multi-core co-simulation of cyber-physical systems: application to internal combustion engines. Simul Model Pract Theory 47:79CrossRefGoogle Scholar
  17. 17.
    Schonherr M, Kucher K, Geier M, Stiebler M, Freudiger S, Krafczyk M (2011) Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Comput Math Appl 61:3730CrossRefGoogle Scholar
  18. 18.
    Bao H, Bielak J, Ghattas O, Kallivokas L, O’Hallaron D, Shewchuk J, Xu J (1998) Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput Methods Appl Mech Eng 152:85–102CrossRefzbMATHGoogle Scholar
  19. 19.
    Baregheh M, Mezentsev V, Schmitz H (2011) Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma. In: SPIE Opt. Optoelectron. Int. Soc. Opt. Photonics, pp 807115–807115Google Scholar
  20. 20.
    Fonseca R, Vieira J, Fiuza F, Davidson A, Tsung F, Mori W, Silva L (2013) Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys Control Fusion 55:1–16CrossRefGoogle Scholar
  21. 21.
    SMF28 (2018) Corning data sheet for SMF28. https://www.corning.com/
  22. 22.
    Crandall P, Quinn M (1993) Block data decomposition for data-parallel programming on a heterogeneous workstation network. In: Proceedings the 2nd International Symposium on High Performance (HPDC), pp 42–49Google Scholar
  23. 23.
    JáJá J (1992) An introduction to parallel algorithms. Addison-Wesley, ReadingzbMATHGoogle Scholar
  24. 24.
    Tomoya S, Kazuhide N, Kazuyuki S, Koji I, Izumi S (2008) Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber. Opt Fiber Technol 14(1):10–15CrossRefGoogle Scholar
  25. 25.
    Lee V, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A, Singhal R (2010) Debunking the 100\(\times \) GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. ACM SIGARCH Comput Archit News 38(3):451–460CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Autonoma del CarmenCiudad del CarmenMexico
  2. 2.Conacyt-Centro de Investigacion en MatematicasMeridaMexico
  3. 3.Facultad de MatematicasUniversidad Autonoma de YucatanMeridaMexico
  4. 4.Instituto Politécnico NacionalCentro de Investigación e Innovación TecnológicaAzcapotzalco, Ciudad de MexicoMexico

Personalised recommendations