The Journal of Supercomputing

, Volume 75, Issue 3, pp 1107–1122 | Cite as

Elliptic Curve Cryptography hardware accelerator for high-performance secure servers

  • Luis ParrillaEmail author
  • José A. Álvarez-Bermejo
  • Encarnación Castillo
  • Juan A. López-Ramos
  • Diego P. Morales-Santos
  • Antonio García


Security threats affecting electronics communications in the current world make necessary the encryption and authentication of every transaction. The increasing levels of security required are leading to an overload of transaction servers due to cryptographic tasks. In this paper, a hardware-implemented coprocessor for Elliptic Curve Cryptography operations is presented. This coprocessor enables the acceleration of secure services and can be implemented in the last generations FPGA, thus allowing to host in the same chip a software secure web/database server and the cryptographic coprocessor. Obtained results show advantages of the proposed solution when compared to software implementations and classical acceleration using graphics processing units. Moreover, the proposed cryptographic coprocessor presents improvements over other hardware implementations when area, performance and scalability are considered. The developed crypto-processor has been implemented in a xc7z020clg484-1 device from Xilinx, taking advantage of the synergy provided by the ARM microprocessors and the programmable logic for hardware implementations included in the device. This design requires only 9852 LUTs, while providing 8930 scalar-point operations per second when operating at 50 MHz, with a power consumption of 0.42 W.


Elliptic Curve Cryptography Hardware accelerator Codesign FPGA 


  1. 1.
    Stevens M, Bursztein E, Karpman P, Albertini A, Markov Y (2017) The first collision for full SHA-1.
  2. 2.
    Marzouqi H, Al-Qutayri M, Salah K, Schinianakis D, Stouraitis T (2016) A high-speed FPGA implementation of an RSD-based ECC processor. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(1):151–164CrossRefGoogle Scholar
  3. 3.
    Roy DB, Agrawal S, Rebeiro C, Mukhopadhyay D (2016) Accelerating OpenSSL’s ECC with low cost reconfigurable hardware. In: IEEE 2016 International Symposium on Integrated Circuits (ISIC), pp 1–4Google Scholar
  4. 4.
    Ay AU, Ozturk E, Henriquez FR, Savas E (2016) Design and implementation of a constant-time FPGA accelerator for fast elliptic curve cryptography. In: 2016 International Conference on IEEE ReConFigurable Computing and FPGAs (ReConFig), pp 1–8Google Scholar
  5. 5.
    Crockett LH, Elliot RA, Enderwitz MA, Stewart RW (2014) The Zynq book: embedded processing with the ARM cortex-A9 on the Xilinx Zynq-7000 all programmable SoC. Strathclyde Academic Media, GlasgowGoogle Scholar
  6. 6.
    Lewis D, Chiu G, Chromczak J, Galloway D, Gamsa B, Manohararajah V, Van Dyken J (2016) The stratix\(^{{\rm TM}}\) 10 highly pipelined fpga architecture. In: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp 159–168Google Scholar
  7. 7.
    Dierks T, Rescorla E (2008) The transport layer security (TLS) protocol version 1.2. RFC 5246 (Proposed Standard). Internet Engineering Task ForceGoogle Scholar
  8. 8.
    Wagner D, Schneier B (1996) Analysis of the SSL 3.0 protocol. In: The Second USENIX Workshop on Electronic Commerce Proceedings, vol 1, no 1, pp 29–40Google Scholar
  9. 9.
    Varela-Vaca AJ, Gasca RM (2013) Towards the automatic and optimal selection of risk treatments for business processes using a constraint programming approach. Inf Softw Technol 55(11):1948–1973CrossRefGoogle Scholar
  10. 10.
    Eisenbarth T, Kumar S (2007) A survey of lightweight-cryptography implementations. IEEE Des Test Comput 24(6):522–533CrossRefGoogle Scholar
  11. 11.
    IEEE (2000) IEEE standard specifications for public-key cryptography. IEEE Std 1363-2000Google Scholar
  12. 12.
    IEEE (2004) IEEE standard specifications for public-key cryptography—amendment 1: additional techniques. IEEE Std 1363a-2004Google Scholar
  13. 13.
    Vanstone SA (2003) Next generation security for wireless: elliptic curve cryptography. Comput Secur 22(5):412–415CrossRefGoogle Scholar
  14. 14.
    Lauter K (2004) The advantages of elliptic curve cryptography for wireless security. IEEE Wirel Commun 11(1):62–67MathSciNetCrossRefGoogle Scholar
  15. 15.
    Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):109–203MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cohen H et al (eds) (2005) Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Miller VS (1986) Use of elliptic curves in cryptography. In: Advances in Cryptology—CRYPTO’85 Proceedings. Springer, Berlin, pp 417–426Google Scholar
  18. 18.
    Moeller B, Duong T, Kotowicz K (2014) This POODLE bites: exploiting the SSL 3.0 fallback. Security Advisory (Google)Google Scholar
  19. 19.
    Blake-Wilson S, Moeller B, Gupta V, Hawk C, Bolyard Wheeler N (2006) Elliptic curve cryptography (ECC) cipher suites for transport layer security (TLS). RFC 4492Google Scholar
  20. 20.
    Huang LS, Adhikarla S, Boneh D, Jackson C (2014) An experimental study of TLS forward secrecy deployments. IEEE Internet Comput 18(6):43–51CrossRefGoogle Scholar
  21. 21.
    Johnson D, Menezes A, Vanstone S (2001) The elliptic curve digital signature algorithm (ECDSA). Int J Inf Secur 1(1):36–63CrossRefGoogle Scholar
  22. 22.
    NIST (2013) FIPS PUB 186-4, Digital signature standard (DSS)Google Scholar
  23. 23.
    Hankerson D, Menezes AJ, Vanstone S (2006) Guide to elliptic curve cryptography. Springer, BerlinzbMATHGoogle Scholar
  24. 24.
    Sutter G, Deschamps J, Imaña J (2013) Efficient elliptic curve point multiplication using digit serial binary field operations. IEEE Trans Ind Electron 60(1):217–225CrossRefGoogle Scholar
  25. 25.
    Karatsuba A (1995) The complexity of computations. Proc Steklov Inst Math 211:169–183MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fan H, Sun J, Gu M, Lam KY (2010) Overlap-free Karatsuba–Ofman polynomial multiplication algorithms. IET Inf Secur 4(1):8–14CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Henríquez F, Koc CK (2003) On fully parallel karatsuba multipliers for GF\((2^m)\). In: Proceedings of International Conference on Computer Science and Technology (CST 2003), pp 405–410Google Scholar
  28. 28.
    Parrilla L, Morales DP, López-Villanueva JA, López-Ramos JA, Álvarez-Bermejo JA (2015) Hardware implementation of a new ECC key distribution protocol for securing wireless sensor networks. In: 2015 Conference on Design of Circuits and Integrated Systems (DCIS), pp 1–6Google Scholar
  29. 29.
    Sutter G, Deschamps J, Imaña J (2013) Efficient elliptic curve point multiplication using digit serial binary field operations (additional material for published paper).
  30. 30.
    Brunner H, Curiger A, Hofstetter M (1993) On computing multiplicative inverses in GF\((2^m)\). IEEE Trans Comput 42(8):1010–1015MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yan Z, Sarwate DV (2003) New systolic architectures for inversion and division in GF\((2^m)\). IEEE Trans Comput 52(11):1514–1519Google Scholar
  32. 32.
    Itoh T, Tsujii S (1988) A fast algorithm for computing multiplicative inverses in GF\((2^m)\) using normal bases. Inf Comput 78(3):171–177CrossRefzbMATHGoogle Scholar
  33. 33.
    Parrilla L, Lloris A, Castillo E, Garcia A (2012) Minimum-clock-cycle Itoh-Tsujii algorithm hardware implementation for cryptography applications over GF\((2^m)\) fields. Electron Lett 48(18):1126–1128CrossRefGoogle Scholar
  34. 34.
    Bluhm M, Gueron S (2015) Fast software implementation of binary elliptic curve cryptography. J Cryptogr Eng 5(3):215–226CrossRefGoogle Scholar
  35. 35.
    Taverne J, Faz-Hernández A, Aranha DF, Rodríguez-Henríquez F, Hankerson D, López J (2011) Speeding scalar multiplication over binary elliptic curves using the new carry-less multiplication instruction. J Cryptogr Eng 1(3):187CrossRefzbMATHGoogle Scholar
  36. 36.
    Seo SC, Taehong K, Hong S (2015) Accelerating elliptic curve scalar multiplication over GF(2m) on graphic hardwares. J Parallel Distrib Comput 75:152–167CrossRefGoogle Scholar
  37. 37.
    Ansari B, Hasan MA (2008) High-performance architecture of elliptic curve scalar multiplication. IEEE Trans Comput 57(11):1443–1453MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Electronics and Computer TechnologyUniversidad de GranadaGranadaSpain
  2. 2.Department InformaticsUniversidad de AlmeríaAlmeríaSpain
  3. 3.Department MathematicsUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations