Advertisement

The Journal of Supercomputing

, Volume 75, Issue 4, pp 1894–1908 | Cite as

Optimal solution to intelligent multi-channel wireless communications using dynamic programming

  • Hui Zhao
  • Meikang QiuEmail author
  • Keke Gai
  • Xin He
Article

Abstract

With the booming increase of networking-oriented technologies, the implementation of the intelligent data has become a fashionable alternative for enterprises or organizations to create values or improve their existing offerings. However, communications are encountering restrictions caused by the limited energy supplies in mobile computing when the volume of the data requiring wireless transmissions keeps growing in a dramatic manner. This paper focuses on saving energy consumptions in wireless communications and presents a novel optimal solution to deploying multi-channel connections with minimum energy costs. Our approach is called Intelligent Multi-Channel Communication model, which is created to minimize the total energy cost when ensuring the performance meets efficiency demands. We implement experimental evaluations to examine the effectuation of our approach and find that the results meet our design expectations.

Keywords

Multi-channel communication Dynamic programming Intelligent data Optimal solution 

References

  1. 1.
    Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform 10(4):2233–2243CrossRefGoogle Scholar
  2. 2.
    Fernandes L, Souza J, Pessin G, Shinzato P, Sales D, Mendes C, Prado M, Klaser R, Magalhães A, Hata A (2014) CaRINA intelligent robotic car: architectural design and applications. J Syst Archit 60(4):372–392CrossRefGoogle Scholar
  3. 3.
    Qiu M, Zhong M, Li J, Gai K, Zong Z (2015) Phase-change memory optimization for green cloud with genetic algorithm. IEEE Trans Comput 64(12):3528–3540MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gai K, Qiu M, Zhao H, Tao L, Zong Z (2015) Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. J Netw Comput Appl 59:46–54CrossRefGoogle Scholar
  5. 5.
    Dobre C, Hafa F (2014) Intelligent services for big data science. Future Gener Comput Syst 37:267–281CrossRefGoogle Scholar
  6. 6.
    Gai K, Qiu M, Sun X (2018) A survey on FinTech. J Netw Comput Appl 103:262–273CrossRefGoogle Scholar
  7. 7.
    Gai K, Qiu M (2018) Blend arithmetic operations on tensor-based fully homomorphic encryption over real numbers. IEEE Trans Ind Inform 99:1Google Scholar
  8. 8.
    Lu H, Li J, Guizani M (2014) Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Trans Parallel Distrib Syst 25(3):750–761CrossRefGoogle Scholar
  9. 9.
    Gai K, Qiu M, Chen M, Zhao H (2016) SA-EAST: security-aware efficient data transmission for ITS in mobile heterogeneous cloud computing. ACM Trans Embed Comput Syst 16(2):60Google Scholar
  10. 10.
    Lajunen A (2014) Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transp Res Part C Emerg Technol 38:1–15CrossRefGoogle Scholar
  11. 11.
    Yu L, Jiang T, Cao Y (2015) Energy cost minimization for distributed internet data centers in smart microgrids considering power outages. IEEE Trans Parallel Distrib Syst 26(1):120–130CrossRefGoogle Scholar
  12. 12.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376CrossRefGoogle Scholar
  13. 13.
    Karagiannis V, Chatzimisios P, Vazquez-Gallego F, Alonso-Zarate J (2015) A survey on application layer protocols for the internet of things. Trans IoT Cloud Comput 3(1):11–17Google Scholar
  14. 14.
    Gai K, Qiu M, Tao L, Zhu Y (2016) Intrusion detection techniques for mobile cloud computing in heterogeneous 5G. Secur Commun Netw 9(16):3049–3058CrossRefGoogle Scholar
  15. 15.
    Gai K, Qiu M, Ming Z, Zhao H, Qiu L (2017) Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Trans Smart Grid 8(5):2431–2439CrossRefGoogle Scholar
  16. 16.
    Betzler A, Gomez C, Demirkol I, Paradells J (2016) CoAP congestion control for the internet of things. IEEE Commun Mag 54(7):154–160CrossRefGoogle Scholar
  17. 17.
    Costa L, Rabaey J, Wolisz A, Rosan M, Zuffo M (2015) Swarm OS control plane: an architecture proposal for heterogeneous and organic networks. IEEE Trans Consum Electron 61(4):454–462CrossRefGoogle Scholar
  18. 18.
    Lee Y, Hsiao W, Huang C, Seng-cho T (2016) An integrated cloud-based smart home management system with community hierarchy. IEEE Trans Consum Electron 62(1):1–9CrossRefGoogle Scholar
  19. 19.
    Cintuglu M, Mohammed O, Akkaya K, Uluagac A (2017) A survey on smart grid cyber-physical system testbeds. IEEE Commun Surv Tutor 19(1):446–464CrossRefGoogle Scholar
  20. 20.
    Fang S, Xu D, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans Ind Inform 10(2):1596–1605CrossRefGoogle Scholar
  21. 21.
    Wood J, Beecham R, Dykes J (2014) Moving beyond sequential design: reflections on a rich multi-channel approach to data visualization. IEEE Trans Vis Comput Graph 20(12):2171–2180CrossRefGoogle Scholar
  22. 22.
    ElSawy H, Hossain E (2014) On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control. IEEE Trans Wirel Commun 13(8):4454–4469CrossRefGoogle Scholar
  23. 23.
    Mo Z, Su W, Batalama S, Matyjas J (2014) Cooperative communication protocol designs based on optimum power and time allocation. IEEE Trans Wirel Commun 13(8):4283–4296CrossRefGoogle Scholar
  24. 24.
    Gai K, Qiu M, Zhao H, Dai W (2016) Privacy-preserving adaptive multi-channel communications under timing constraints. In: The IEEE International Conference on Smart Cloud 2016, New York . IEEE, p 1Google Scholar
  25. 25.
    Yigit M, Gungor V, Fadel E, Nassef L, Akkari N, Akyildiz I (2016) Channel-aware routing and priority-aware multi-channel scheduling for WSN-based smart grid applications. J Netw Comput Appl 71:50–58CrossRefGoogle Scholar
  26. 26.
    Almotairi K, Shen X (2015) A distributed multi-channel MAC protocol for ad hoc wireless networks. IEEE Trans Mob Comput 14(1):1–13CrossRefGoogle Scholar
  27. 27.
    Gai K, Qiu M, Zhao H, Sun X (2017) Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans Sustain Comput PP(99):1Google Scholar
  28. 28.
    Gai K, Qiu M, Zhao H (2018) Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. J Parallel Distrib Comput 111:126–135CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Intelligent Network SystemHenan UniversityKaifengChina
  2. 2.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina
  3. 3.Electrical Engineering DepartmentColumbia UniversityNew York CityUSA
  4. 4.School of Computer Science and TechnologyBeijing Institute of TechnologyBeijingChina
  5. 5.Software SchoolHenan UniversityKaifengChina

Personalised recommendations