Fast solution of electromagnetic scattering problems using Xeon Phi coprocessors

  • J. L. Campon
  • L. LandesaEmail author


Electromagnetic scattering problems can be solved by discretizing and transforming integral equations into matrix equations using the method of moments. In large-scale problems, the problem cannot be solved directly and needs to be solved using iterative methods, which use matrix vector products (MVP) to perform the iterative convergence to the solution. An efficient parallel implementation of MVP over Intel Xeon Phi coprocessor is proposed in this paper to speed up the solution of the scattering over a generalized minimal residual method. Using these manycore integrated processors, we can solve an electromagnetic scattering three-dimensional problem improving runtime on a coprocessor system.


MIC Xeon Phi Electromagnetic scattering 



This work was supported by the Spanish Government and European Regional Development Fund (ERDF) (Project TEC2017-85376-C2-1-R) and by Junta de Extremadura and European Regional Development Fund (ERDF) (Project GR18055).


  1. 1.
    Harrington RF (1993) Field computation by moment method. IEEE Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729732CrossRefGoogle Scholar
  3. 3.
    Jin J (2002) The finite element method in electromagnetics. Wiley, HobokenzbMATHGoogle Scholar
  4. 4.
    Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Statist Comput 7:856869MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kelley CT (1995) Iterative methods for linear and nonlinear equations. Soc Ind Appl MathGoogle Scholar
  6. 6.
    Coifrnan R, Rokhlin V, Wanzura S (1993) The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag Mag 35(3):7–12CrossRefGoogle Scholar
  7. 7.
    Song JM, Chew WC (1995) Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering. Microw Opt Technol Lett 10:14–19CrossRefGoogle Scholar
  8. 8.
    Song JM, Lu CC, Chew WC (1997) Multi level fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag 45(10):1488–1493CrossRefGoogle Scholar
  9. 9.
    Wagner R, Song J, Chew WC (1997) Monte carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces. IEEE Trans Antennas Propag 45(2):235–245CrossRefGoogle Scholar
  10. 10.
    Taboada JM, Landesa L et al (2009) High scalability FMM-FFT electromagnetic solver for supercomputer systems. IEEE Antennas Propag Mag 51(6):20–28CrossRefGoogle Scholar
  11. 11.
    López-Portugués M, López-Fernández JA, Díaz-Gracia N et al (2014) Aircraft noise scattering prediction using different accelerator architectures. J Supercomput 70(2):612–622CrossRefGoogle Scholar
  12. 12.
    López-Portugués M, López-Fernández JA, Ranilla J, Ayestarán RG, Las-Heras F (2017) Using heterogeneous computing for scattering prediction in scenarios with several source configurations. J Supercomput 73(1):57–74CrossRefGoogle Scholar
  13. 13.
    Lin Z, Chen Y, Zhao X, Garcia-Donoro D, Zhang Y, Zhang H (2017) Parallel higher-order method of moments with efficient out-of-GPU memory schemes for solving electromagnetic problems. ACES J 32(9):781–788Google Scholar
  14. 14.
    Poggio AJ, Miller EK (1973) Computer techniques for electromagnetics, Chap.4, R. Mittra (ed.). Pergamon Press, New YorkGoogle Scholar
  15. 15.
    Yla-Oijala P, Taskinen M, Jarvenpaa S (2005) Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci 40:6CrossRefGoogle Scholar
  16. 16.
    Rivero J, Taboada JM, Landesa L, Obelleiro F, Garcia-Tunon I (2010) Surface integral equation formulation for the analysis of left-handed metamaterials. Opt Express 18(15):15876–15886CrossRefGoogle Scholar
  17. 17.
    Poggio AJ, Miller EK (1973) Integral equation solutions of three-dimensional scattering problems. In: R. Mittra (ed.) Computer Techniques for Electromagnetics, Chap.4. Pergamon PressGoogle Scholar
  18. 18.
    Rao S, Wilton D, Glisson A (1982) Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag 30(3):409–418CrossRefGoogle Scholar
  19. 19.
    Intel Math Kernel Library Developer Reference (2015).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Informatics IT Security DepartmentCaceres Provincial CouncilCáceresSpain
  2. 2.Escuela PolitecnicaUniversity of ExtremaduraCáceresSpain

Personalised recommendations