Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Grid-based indexing with expansion of resident domains for monitoring moving objects

  • 176 Accesses

  • 1 Citations

Abstract

Continuous range queries (CRQs) for moving objects monitor the designated spatial regions and report their up-to-date query results. In such queries, query regions are more static than when compared to moving objects. Therefore, creating an index structure for query regions to process CRQs requires lower maintenance cost of the server than that of moving objects. To relieve the workload of the server, each moving object can be assigned with a resident domain where the object monitors the overlapped query regions and informs the server if any update occurs. In this paper, we propose a grid-based indexing with expansion of resident domains for monitoring CRQs in the mobile/ubiquitous computing environments. The proposed method expands resident domains for moving objects as large as possible so that they have less chance to inform the server about updates. Comprehensive experiments with various settings have verified that our proposed method outperforms the QR*-tree.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Rathore MM, Ahmad A, Paul A, Rho S (2016) Urban planning and building smart cities based on the internet of things using big data analytics. Comput Netw 101(4):63–80

  2. 2.

    Gubbia J, Buyyab R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660

  3. 3.

    Du C, Zhou Z, Shu L, Niu J, Wang Q (2015) An efficient indexing and query mechanism for ubiquitous IoT services. Int J Ad Hoc Ubiquitous Comput 18(4):245–255

  4. 4.

    Talari S, Shafie-khah M, Siano P, Loia V, Tommasetti A, Catalão PS (2017) A review of smart cities based on the internet of things concept. Energies 10(4):421

  5. 5.

    Wu KL, Chen SK, Yu PS (2005) Efficient processing of continual range queries on location-aware mobile services. Inf Syst Front 7(4–5):435–448

  6. 6.

    Wang H, Zimmermann R, Ku WS (2006) Distributed continuous range query processing on moving objects. In: Lecture Notes in Computer Science, vol 4080, pp 655–665

  7. 7.

    Stojanovic D, Papadopoulos AN, Predic B, Djordjevic-Kajan S, Nanopoulos A (2008) Continuous range monitoring of mobile objects in road networks. Data Knowl Eng 64(1):77–100

  8. 8.

    Farrell T, Rothermel K, Cheng R (2011) Processing continuous range queries with spatiotemporal tolerance. IEEE Trans Mob Comput 10(3):320–334

  9. 9.

    Ilarri S, Mena E, Illarramendi A (2010) Location-dependent query processing: where we are and where we are heading. ACM Comput Surv 42(3):1–73

  10. 10.

    Park K (2015) An efficient scalable spatial data search for location-aware mobile services. J Inf Sci Eng 31(1):165–178

  11. 11.

    Xu Z (2017) The analytics and applications on supporting big data framework in wireless surveillance networks. Int J Soc Humanist Comput 2(3–4):141–149

  12. 12.

    Chen HL, Chang YI (2011) Nine-areas-tree-bit-patterns-based method for continuous range queries over moving objects. IET Softw 5(1):54–69

  13. 13.

    Cazalas J, Guha R (2012) Leveraging computation sharing and parallel processing in location-dependent query processing. J Supercomput 61(1):215–234

  14. 14.

    Shen JH, Chang YI, Chang FM (2014) Dual-expansion indexing for moving objects. IET Softw 8(2):62–72

  15. 15.

    Cai Y, Hua KA, Cao G, Xu T (2006) Real-time processing of range-monitoring queries in heterogeneous mobile databases. IEEE Trans Mob Comput 5(7):931–942

  16. 16.

    Jung H, Kim YS, Chung YD (2013) SPQI: an efficient index for continuous range queries in mobile environments. J Inf Sci Eng 29(3):557–578

  17. 17.

    Jung H, Kim YS, Chung YD (2014) QR-tree: an efficient and scalable method for evaluation of continuous range queries. Inf Sci 274:156–176

  18. 18.

    Jung H, Song M, Youn HY, Kim UM (2015) Evaluation of content-matched range monitoring queries over moving objects in mobile computing environments. Sensors 15(9):24143–24177

  19. 19.

    Phan TK, Jung H, Youn HY, Kim UM (2017) QR*-tree: an adaptive space-partitioning index for monitoring moving objects. J Inf Sci Eng 33(2):385–411

  20. 20.

    Shen JH, Lu CT, Chen MY (2017) Expandable grid indexing for mobile objects. In: Proceedings of the 6th International Conference on Frontier Computing, pp 12–14

  21. 21.

    Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query indexing and velocity constrained indexing: scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10):1124–1140

  22. 22.

    Song M (2015) Sleepwalk: scalable and energy-efficient processing of continuous range queries for location-aware mobile computing. Int J Distrib Sens Netw 11(10):1–16

  23. 23.

    Shen JH, Lu CT, Chen MY, Mai CT (2016) Spatial air index based on largest empty rectangles for non-flat wireless broadcast in pervasive computing. ISPRS Int J Geo-Inf 5(11):211

  24. 24.

    Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. In: Imielinski T, Korth HF (eds) Mobile computing. Springer, Boston, pp 153–181

Download references

Acknowledgements

This research was supported by grants MOST 105-2410-H-468-012 and MOST 106-2410-H-468-009 from the Ministry of Science and Technology, Taiwan. We thank the reviewers for their valuable comments and suggestions, greatly improving the quality of this paper. Our gratitude also goes to Michael Burton of Asia University for his assistance with proofreading.

Author information

Correspondence to Jun-Hong Shen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Lu, C., Chen, M. et al. Grid-based indexing with expansion of resident domains for monitoring moving objects. J Supercomput (2017). https://doi.org/10.1007/s11227-017-2224-2

Download citation

Keywords

  • Continuous range queries
  • Internet of the things
  • Location-based services
  • Mobile computing
  • Moving objects