Advertisement

The Journal of Supercomputing

, Volume 74, Issue 5, pp 1994–2005 | Cite as

A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis

  • Saeed Rasouli HeikalabadEmail author
  • Mazaher Naji Asfestani
  • Mehdi Hosseinzadeh
Article

Abstract

Quantum-dot cellular automata (QCA) is the appearance of new technology and can be a suitable alternative to semiconductor transistor technology. In this paper, the new structure of the two-input XOR gate is presented, which is the modified version of the three-input XOR gate. This structure can be used to design various useful QCA circuits. By utilizing this gate, we design and implement a new full adder structure with 90-degree cells. This structure is designed in a single layer without cross-wiring. The operation of the proposed structure has been verified by QCADesigner version 2.0.3 and energy dissipation investigated by QCAPro tool. We also compared the effectiveness of our structure with the two previous structures.

Keywords

Quantum-dot cellular automata (QCA) Nanotechnology XOR gate Full adder 

References

  1. 1.
    Heikalabad SR, Navin AH, Hosseinzadeh M (2015) Midpoint memory: a special memory structure for data-oriented models implementation. J Circuits Syst Comput 24:1550063CrossRefGoogle Scholar
  2. 2.
    Yu W, Zhang B, Liu C, Zhao Y, Wu WR, Xue ZY, Chen M, Buca D, Hartmann J-M, Wang X, Zhao QT, Mantl S (2014) Impact of Si cap, strain and temperature on the hole mobility of (s)Si/sSiGe/(s)SOI quantum-well p-MOSFETs. Microelectron Eng 113:5–9.  https://doi.org/10.1016/j.mee.2013.06.015 CrossRefGoogle Scholar
  3. 3.
    Liu M (2006) Robustness and power dissipation in quantum-dot cellular automata. Ph.D. thesis, Notre dame University, IndianaGoogle Scholar
  4. 4.
    Heikalabad SR, Navin AH, Hosseinzadeh M (2016) Content addressable memory cell in quantum-dot cellular automata. Microelectron Eng 163:140–150CrossRefGoogle Scholar
  5. 5.
    Fey D (2012) Optical multiplexing techniques for photonic Clos networks in High Performance Computing Architectures. J Supercomput 62(2):620–632CrossRefGoogle Scholar
  6. 6.
    Bose R, Johnson HT (2004) Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots. Microelectron Eng 75(1):43–53.  https://doi.org/10.1016/j.mee.2003.11.008 CrossRefGoogle Scholar
  7. 7.
    Niemier MT (2004) Designing digital systems in quantum cellular automata. M.S. thesis, Notre Dame University, IndianaGoogle Scholar
  8. 8.
    Karkaj ET, Heikalabad SR (2017) Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik Int J Light Electron Opt.  https://doi.org/10.1016/j.ijleo.2016.11.087 Google Scholar
  9. 9.
    Karkaj ET, Heikalabad SR (2017) A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct.  https://doi.org/10.1016/j.spmi.2016.08.054 Google Scholar
  10. 10.
    Gadim MR, Navimipour NJ (2017) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol.  https://doi.org/10.1007/s00542-017-3502-x Google Scholar
  11. 11.
    Jayashree HV (2016) Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J Supercomput 72(4):1477–1493CrossRefGoogle Scholar
  12. 12.
    Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867CrossRefGoogle Scholar
  13. 13.
    Kotiyal S (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693CrossRefGoogle Scholar
  14. 14.
    Khan MHA (2017) Automatic synthesis of quaternary quantum circuits. J Supercomput 73(5):1733–1759CrossRefGoogle Scholar
  15. 15.
    Len CS, Tougaw PD (1993) Lines of interaction quantum-dot cells: a binary wire. J Appl Phys 74:6227–6233CrossRefGoogle Scholar
  16. 16.
    Rad SK, Heikalabad SR (2017) Reversible flip-flops in quantum-dot cellular automata. Int J Theor Phys 56(9):2990–3004.  https://doi.org/10.1007/s10773-017-3575-4 CrossRefzbMATHGoogle Scholar
  17. 17.
    Barughi YZ, Heikalabad SR (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56(9):2848–2858.  https://doi.org/10.1007/s10773-017-3453-0 CrossRefzbMATHGoogle Scholar
  18. 18.
    Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRefGoogle Scholar
  19. 19.
    Lent C, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557CrossRefGoogle Scholar
  20. 20.
    Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B Phys Condens Matter.  https://doi.org/10.1016/j.physb.2017.02.028 Google Scholar
  21. 21.
    Asfestani MN, Heikalabad SR (2017) A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys B Phys Condens Matter.  https://doi.org/10.1016/j.physb.2017.06.059 Google Scholar
  22. 22.
    Angizi S, Alkaldy E, Bagherzadeh N, Navi K (2014) Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J Low Power Electron 10:259–271CrossRefGoogle Scholar
  23. 23.
    Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone based crossover. IEEE Trans Nanotechnol 14:497–504.  https://doi.org/10.1109/TNANO.2015.2409117 CrossRefGoogle Scholar
  24. 24.
    Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50:35–43CrossRefGoogle Scholar
  25. 25.
    Sasamal TN, Singh AK, Mohan A (2016) An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik Int J Light Electron Opt 127(20):8576–8591CrossRefGoogle Scholar
  26. 26.
    Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433CrossRefGoogle Scholar
  27. 27.
    Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15MathSciNetCrossRefGoogle Scholar
  28. 28.
    Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):2631CrossRefGoogle Scholar
  29. 29.
    Tangmettajittakul O, Thainoi S, Changmoang P, Kanjanachuchai S, Rattanathammaphan S, Panyakeow S (2010) Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectron Eng 87(5–8):1304–1307.  https://doi.org/10.1016/j.mee.2009.12.063 CrossRefGoogle Scholar
  30. 30.
    Srivastava S, Asthana A, Bhanja S, Sarkar (2011) QCAPro-an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE International Symposium Circuits System, pp 2377–2380Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Saeed Rasouli Heikalabad
    • 1
    Email author
  • Mazaher Naji Asfestani
    • 1
  • Mehdi Hosseinzadeh
    • 2
    • 3
  1. 1.Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Iran University of Medical SciencesTehranIran
  3. 3.Computer ScienceUniversity of Human DevelopmentSulaimaniyahIraq

Personalised recommendations