Advertisement

The Journal of Supercomputing

, Volume 74, Issue 2, pp 530–550 | Cite as

Large-scale simulation of a self-organizing self-management cloud computing framework

  • Christos K. Filelis-Papadopoulos
  • Konstantinos M. Giannoutakis
  • George A. Gravvanis
  • Dimitrios Tzovaras
Article

Abstract

A recently introduced cloud simulation framework is extended to support self-organizing and self-management local strategies in the cloud resource hierarchy. This dynamic hardware resource allocation system is evolving toward the goals defined by local strategies, which are determined as maximization of: energy efficiency of cloud infrastructures, task throughput, computational efficiency and resource management efficiency. Heterogeneous hardware resources are considered that are except from commodity CPU servers, hardware accelerators such as GPUs, MICs and FPGAs, thus forming a heterogeneous cloud infrastructure. Energy consumption and task execution models for the heterogeneous accelerators are also proposed, in order to demonstrate the energy efficiency of the proposed resource allocation system. Implementation details of the new functionalities on the parallel cloud simulation framework are discussed, while numerical results are given for the scalability and utilization of the cloud elements using the self-organization and self-management framework with two VM placement strategies.

Keywords

Simulation Self-organization Self-management Resource allocation Heterogeneous cloud Energy consumption 

Notes

Acknowledgements

This work was partially funded by the European Union’s Horizon 2020 Research and Innovation Programme through CloudLightning project (http://www.cloudlightning.eu) under Grant Agreement No. 643946. The authors acknowledge the Greek Research and Technology Network (GRNET) for the provision of the National HPC facility ARIS under Project PR002040-ScaleSciComp.

References

  1. 1.
    Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth Lect Comput Architect 8(3):1–154CrossRefGoogle Scholar
  2. 2.
    Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw Pract Exp 41(1):23–50CrossRefGoogle Scholar
  3. 3.
    Casanova H, Giersch A, Legrand A, Quinson M, Suter F (2014) Versatile, scalable, and accurate simulation of distributed applications and platforms. J Parallel Distrib Comput 74(10):2899–2917. doi: 10.1016/j.jpdc.2014.06.008. http://www.sciencedirect.com/science/article/pii/S0743731514001105
  4. 4.
    Chronopoulos A, Andonie R, Benche M, Grosu D (2001) A class of loop self-scheduling for heterogeneous clusters. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp 282–291. doi: 10.1109/CLUSTR.2001.959989
  5. 5.
    Dagum L, Menon R (1998) Openmp: an industry-standard api for shared-memory programming. J IEEE Comput Sci Eng 5(1):46–55CrossRefGoogle Scholar
  6. 6.
    Filelis-Papadopoulos C, Gravvanis G, Morrison J (2017) Cloudlightning simulation and evaluation roadmap. In: Proceedings of the 1st International Workshop on Next Generation of Cloud Architectures, cloudNG:17, pp 2:1–2:6. ACM, New York, NY. doi: 10.1145/3068126.3068128
  7. 7.
    Filelis-Papadopoulos C, Grylonakis E, Kyziropoulos P, Gravvanis G, Morrison J (2016) Characterization of hardware in self-managing self-organizing cloud environment. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics, PCI ’16, pp 56:1–56:6. ACM, New York, NY. doi: 10.1145/3003733.3003749
  8. 8.
    Filelis-Papadopoulos C, Xiong H, Spătaru A, Castañé GG, Dong D, Gravvanis GA, Morrison JP (2017) A generic framework supporting self-organisation and self-management in hierarchical systems. In: International Symposium on Parallel and Distributed Computing 2017. ISPDC’17, to appear. IEEEGoogle Scholar
  9. 9.
    Filelis-Papadopoulos CK, Gravvanis GA, Kyziropoulos PE (2017) A framework for simulating large scale cloud infrastructures. Future Gener Comput Syst. doi: 10.1016/j.future.2017.06.017. http://www.sciencedirect.com/science/article/pii/S0167739X17303230
  10. 10.
    Giannoutakis KM, Makaratzis AT, Tzovaras D, Filelis-Papadopoulos CK, Gravvanis GA (2017) On the power consumption modeling for the simulation of heterogeneous hpc clouds. In: Proceedings of the 1st International Workshop on Next Generation of Cloud Architectures, CloudNG:17, pp 1:1–1:6. ACM, New York, NY. doi: 10.1145/3068126.3068127
  11. 11.
    Gupta A, Milojicic D (2011) Evaluation of hpc applications on cloud. In: Proceedings of the 2011 Sixth Open Cirrus Summit, OCS ’11, pp 22–26. IEEE Computer Society, Washington, DCGoogle Scholar
  12. 12.
    Han Y, Chronopoulos AT (2013) A hierarchical distributed loop self-scheduling scheme for cloud systems. In: 2013 12th IEEE International Symposium on Network Computing and Applications (NCA), pp 7–10. IEEEGoogle Scholar
  13. 13.
    Han Y, Chronopoulos AT (2014) A resilient hierarchical distributed loop self-scheduling scheme for cloud systems. In: 2014 IEEE 13th International Symposium on Network Computing and Applications, pp 80–84. doi: 10.1109/NCA.2014.18
  14. 14.
    Hassani R, Aiatullah M, Luksch P. Improving hpc application performance in public cloud. IERI Proced 10Google Scholar
  15. 15.
    He Q, Zhou S, Kobler B, Duffy D, McGlynn T (2010) Case study for running HPC applications in public clouds. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10, pp 395–401. ACM, New York, NY (2010). doi: 10.1145/1851476.1851535
  16. 16.
    Kliazovich D, Bouvry P, Khan SU (2012) Greencloud: a packet-level simulator of energy-aware cloud computing data centers. J Supercomput 62(3):1263–1283. doi: 10.1007/s11227-010-0504-1 CrossRefGoogle Scholar
  17. 17.
    Lawson G, Sosonkina M, Shen Y (2015) Towards modeling energy consumption of xeon phi. CoRR abs/1505.06539 (2015). http://dblp.uni-trier.de/db/journals/corr/corr1505.html#LawsonSS15
  18. 18.
    Lusk E, Doss N, Skjellum A (1996) A high-performance, portable implementation of the mpi message passing interface standard. Parallel Comput 22:789–828CrossRefzbMATHGoogle Scholar
  19. 19.
    Lynn T, Xiong H, Dong D, Momani B, Gravvanis G, Filelis-Papadopoulos C, Elster A, Khan MMZM, Tzovaras D, Giannoutakis K, Petcu D, Neagul M, Dragon I, Kuppudayar P, Natarajan S, McGrath M, Gaydadjiev G, Becker T, Gourinovitch A, Kenny D, Morrison J (2016) Cloudlightning: a framework for a self-organising and self-managing heterogeneous cloud. In: Proceedings of the 6th International Conference on Cloud Computing and Services Science, vol 1: CLOSER, pp 333–338. doi: 10.5220/0005921503330338
  20. 20.
    Makaratzis AT, Giannoutakis KM, Tzovaras D (2017) Energy modeling in cloud simulation frameworks. Future Gener Comput Syst. doi: 10.1016/j.future.2017.06.016. http://www.sciencedirect.com/science/article/pii/S0167739X17303229
  21. 21.
    Mehrotra P, Djomehri J, Heistand S, Hood R, Jin H, Lazanoff A, Saini S, Biswas R (2012) Performance evaluation of amazon ec2 for nasa HPC applications. In: Proceedings of the 3rd Workshop on Scientific Cloud Computing, ScienceCloud ’12, pp 41–50. ACM, New York, NY. doi: 10.1145/2287036.2287045
  22. 22.
    Openstack. https://www.openstack.org/ (2017). Accessed 22 May, 2017
  23. 23.
    Penmatsa S, Chronopoulos AT, Karonis NT, Toonen BR (2007) Implementation of distributed loop scheduling schemes on the teragrid. In: 2007 IEEE International Parallel and Distributed Processing Symposium, pp 1–8. doi: 10.1109/IPDPS.2007.370551
  24. 24.
    Rao J, Wang KAZXAXC (2013) Optimizing virtual machine scheduling in numa multicore systems. In: 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA), pp 306–317Google Scholar
  25. 25.
    SPEC (2008) Server power and performance characteristics. http://www.spec.org/power_ssj2008/. Accessed 22 May 2017
  26. 26.
    Xi S, Li C, Lu C, Gill C, Xu M, Phan L, Lee I, Sokolsky O (2015) Rt-open stack: CPU resource management for real-time cloud computing. In: 2015 IEEE 8th International Conference on Cloud Computing, pp 179–186. doi: 10.1109/CLOUD.2015.33

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Christos K. Filelis-Papadopoulos
    • 1
  • Konstantinos M. Giannoutakis
    • 2
  • George A. Gravvanis
    • 1
  • Dimitrios Tzovaras
    • 2
  1. 1.Department of Electrical and Computer EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece

Personalised recommendations