Advertisement

The Journal of Supercomputing

, Volume 73, Issue 12, pp 5197–5220 | Cite as

A parallel Self Mesh-Adaptive N-body method based on approximate inverses

  • P. E. Kyziropoulos
  • C. K. Filelis-Papadopoulos
  • G. A. GravvanisEmail author
  • C. Efthymiopoulos
Article

Abstract

A new parallel Self Mesh-Adaptive N-body method based on approximate inverses is proposed. The scheme is a three-dimensional Cartesian-based method that solves the Poisson equation directly in physical space, using modified multipole expansion formulas for the boundary conditions. Moreover, adaptive-mesh techniques are utilized to form a class of separate smaller n-body problems that can be solved in parallel and increase the total resolution of the system. The solution method is based on multigrid method in conjunction with the symmetric factored approximate sparse inverse matrix as smoother. The design of the parallel Self Mesh-Adaptive method along with discussion on implementation issues for shared memory computer systems is presented. The new parallel method is evaluated through a series of benchmark simulations using N-body models of isolated galaxies or galaxies interacting with dwarf companions. Furthermore, numerical results on the performance and the speedups of the scheme are presented.

Keywords

N-body mesh-type method Adaptive techniques Multigrid method Approximate inverse Parallel computations 

Notes

Acknowledgements

The authors acknowledge the Greek Research and Technology Network (GRNET) for the provision of the National HPC facility ARIS under Project PR002040-ScaleSciComp.

References

  1. 1.
    Aarseth SJ (2010) Gravitational N-body simulations: tools and algorithms. Cambridge University Press, CambridgezbMATHGoogle Scholar
  2. 2.
    Barnes J, Hut P (1986) A hierarchical o(nlogn) force-calculation algorithm. Nature 324:446–449CrossRefGoogle Scholar
  3. 3.
    Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press, PrincetonzbMATHGoogle Scholar
  4. 4.
    Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial, 2nd edn. SIAM, PhiladelphiaCrossRefzbMATHGoogle Scholar
  5. 5.
    Bryan GL, Norman ML, O’Shea BW, Abel T, Wise JH, Turk MJ, Reynolds DR, Collins DC, Wang P, Skillman SW, Smith B, Harkness RP, Bordner J, Kim JH, Kuhlen M, Xu H, Goldbaum N, Hummels C, Kritsuk AG, Tasker E, Skory S, Simpson CM, Hahn O, Oishi JS, So GC, Zhao F, Cen R, Li Y, Collaboration TE (2014) Enzo: an adaptive mesh refinement code for astrophysics. Astrophys J Suppl Ser 211(2):19CrossRefGoogle Scholar
  6. 6.
    Chapman B, Jost G, Pas RVD (2007) Using OpenMP: portable shared memory parallel programming (scientific and engineering computation). The MIT Press, CambridgeGoogle Scholar
  7. 7.
    Dehnen W (2000) A very fast and momentum-conserving tree code. J Comput Phys 536:L39–L42Google Scholar
  8. 8.
    Greengard LF, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Haelterman R, Heule JVDV (2009) Non-stationary two-stage relaxation based on the principle of aggregation multigrid. In: Deconinck H, Dick E (eds.) Computational Fluid Dynamics 2006, 4th International Conference on Computational Fluid Dynamics. Springer, Berlin, pp 243–248Google Scholar
  10. 10.
    Harnois-Draps J, Pen UL, Iliev IT, Merz H, Emberson JD, Desjacques V (2013) High-performance p3m n-body code: cubep3m. Mon Not R Astron Soc 436(1):540CrossRefGoogle Scholar
  11. 11.
    Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Taylor and Francis, Inc., BristolCrossRefzbMATHGoogle Scholar
  12. 12.
    Intel Math Kernel Library (2009) Reference manual. Intel Corporation, Santa Clara. ISBN 630813-054USGoogle Scholar
  13. 13.
    Kim JH, Abel T, Agertz O, Bryan GL, Ceverino D, Christensen C, Conroy C, Dekel A, Gnedin NY, Goldbaum NJ, Guedes J, Hahn O, Hobbs A, Hopkins PF, Hummels CB, Iannuzzi F, Keres D, Klypin A, Kravtsov AV, Krumholz MR, Kuhlen M, Leitner SN, Madau P, Mayer L, Moody CE, Nagamine K, Norman ML, Onorbe J, O’Shea BW, Pillepich A, Primack JR, Quinn T, Read JI, Robertson BE, Rocha M, Rudd DH, Shen S, Smith BD, Szalay AS, Teyssier R, Thompson R, Todoroki K, Turk MJ, Wadsley JW, Wise JH, Zolotov A, for the AGORA Collaboration29 (2014) The agora high-resolution galaxy simulations comparison project. Astrophys J Suppl Ser 210(1):14Google Scholar
  14. 14.
    Kravtsov AV, Klypin AA, Khokhlov AM (1997) Adaptive refinement tree—a new high-resolution N-body code for cosmological simulations. Astrophys J Suppl Ser 111:73–94CrossRefGoogle Scholar
  15. 15.
    Kyziropoulos PE (2017) A study of computational methods for parallel simulation of the gravitational n-body problem. Ph.D. Thesis, Department of Electrical and Computer Engineering, Democritus University of Thrace (in preparation)Google Scholar
  16. 16.
    Kyziropoulos PE, Efthymiopoulos C, Gravvanis GA, Patsis PP (2016) Structures induced by companions in galactic discs. MNRAS 463:2210–2228CrossRefGoogle Scholar
  17. 17.
    O’Shea BW, Bryan G, Bordner J, Norman ML, Abel T, Harkness R, Kritsuk A (2005) Introducing enzo, an amr cosmology application. Lecture notes in computational science and engineering, vol 41. Springer, BerlinzbMATHGoogle Scholar
  18. 18.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  19. 19.
    Sellwood JA (2014) GALAXY package for N-body simulation. ArXiv e-printsGoogle Scholar
  20. 20.
    Springel V (2005) The cosmological simulation code gadget-2. Mon Not R Astron Soc 364:1105–1134CrossRefGoogle Scholar
  21. 21.
    Teuben PJ (1995) The stellar dynamics toolbox nemo. In: Astronomical Data Analysis Software and Systems IV, ASP Conference Series, vol 77, p 398Google Scholar
  22. 22.
    Teyssier R (2002) Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron Astrophys 385:337–364CrossRefGoogle Scholar
  23. 23.
    Trottenberg U, Oosterlee CW, Schuller A (2000) Multigrid. Academic press, Elsevier, New York, AmsterdamzbMATHGoogle Scholar
  24. 24.
    Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev 159(1):98–103CrossRefGoogle Scholar
  25. 25.
    Villumsen J (1982) Simulations of galaxy mergers. Mon Not R Astron Soc 199:493–516CrossRefGoogle Scholar
  26. 26.
    Wesseling P (1982) Theoretical and practical aspects of a multigrid method. SIAM J Sci Stat Comput 3(4):387–407CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • P. E. Kyziropoulos
    • 1
  • C. K. Filelis-Papadopoulos
    • 1
  • G. A. Gravvanis
    • 1
    Email author
  • C. Efthymiopoulos
    • 2
  1. 1.Department of Electrical and Computer Engineering, School of EngineeringDemocritus University of ThraceXanthiGreece
  2. 2.Research Center for AstronomyAcademy of AthensAthensGreece

Personalised recommendations