Advertisement

The Journal of Supercomputing

, Volume 72, Issue 11, pp 4089–4106 | Cite as

Analyzing the energy consumption of the storage data path

  • Pablo Llopis
  • Manuel F. Dolz
  • Javier Garcia Blas
  • Florin Isaila
  • Mohammad Reza Heidari
  • Michael Kuhn
Article

Abstract

Data movement is a key aspect of energy consumption in modern computing systems. As computation becomes more energy efficient, the cost of data movement gradually becomes a more relevant issue, especially in high-performance computing systems. The relevance of data movement can be studied at different scales, ranging from microcontrollers and microarchitectures to future Exascale systems. The goal of this work is to analyze the power costs of performing I/O operations and intra-node data movement, focusing on the operating system’s I/O stack. Our approach combines the hardware instrumentation, software instrumentation, and data analysis techniques to gain insights into how different I/O patterns make use of system resources, including electrical power. We synthesize this data-driven process into a methodology and present the results of applying this methodology on sequential read and write patterns. As a result, we identify the key system metrics that contribute to I/O-related power usage and discover how the system makes transitions between different power and performance regimes based on the I/O patterns.

Keywords

HPC I/O operations Power analysis System metrics Statistical analysis 

Notes

Acknowledgments

The work presented in this paper has been partially supported by the EU Project FP7 318793 “EXA2GREEN” and partially supported by the EU under the COST Programme Action IC1305 “Network for Sustainable Ultrascale Computing (NESUS)” and by the Grant TIN2013-41350-P, Scalable Data Management Techniques for High-End Computing Systems from the Spanish Ministry of Economy and Competitiveness.

References

  1. 1.
    The Green500 List: Green500 (2015). http://www.green500.org/. Accessed Aug 2015
  2. 2.
    Department of Energy U (2014) Top ten Exascale research challenges. Tech. Rep., Department of Computer Science, Michigan State University. http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
  3. 3.
    Accardi K (2015) Balancing power and performance in the linux kernel. LinuxCon, San FranciscoGoogle Scholar
  4. 4.
    Kunkel JM, Minartz T, Kuhn M, Ludwig T (2012) Towards an energy-aware scientific i/o interface. Comp Sci Res Dev 27(4):337–345CrossRefGoogle Scholar
  5. 5.
    Borkar S, Chien AA (2011) The future of microprocessors. Commun ACM 54(5):67–77CrossRefGoogle Scholar
  6. 6.
    Orgerie AC, Assuncao MDd, Lefevre L (2014) A survey on techniques for improving the energy efficiency of large-scale distributed systems. ACM Comput Surv 46(4):47:1–47:31. doi: 10.1145/2532637 CrossRefGoogle Scholar
  7. 7.
    Allalouf M, Arbitman Y, Factor M, Kat RI, Meth K, Naor D (2009) Storage modeling for power estimation. In: Proceedings of SYSTOR 2009, pp 3:1–3:10. ACM, New York, NY, USA. doi: 10.1145/1534530.1534535
  8. 8.
    Manousakis I, Marazakis M, Bilas A (2013) Fdio: a feedback driven controller for minimizing energy in I/O-intensive applications. In: Proceedings of the 5th USENIX conference on hot topics in storage and file systems, HotStorage’13. USENIX Association, Berkeley, CA, USA, pp 16–16. http://dl.acm.org/citation.cfm?id=2534861.2534877
  9. 9.
    Lewis A, Ghosh S, Tzeng NF (2008) Run-time energy consumption estimation based on workload in server systems. In: Proceedings of the 2008 conference on power aware computing and systems. HotPower’08USENIX Association, Berkeley, CA, USA, pp 4–4Google Scholar
  10. 10.
    Minartz T, Kunkel J, Ludwig T (2010) Simulation of power consumption of energy efficient cluster hardware. Springer, Berlin. doi: 10.1007/s00450-010-0120-6 Google Scholar
  11. 11.
    Prada L, Garcia J, Calderon A, Garcia JD, Carretero J (2013) A novel black-box simulation model methodology for predicting performance and energy consumption in commodity storage devices. Simul Model Pract Theory 34:48–63. doi: 10.1016/j.simpat.2013.01.006 CrossRefGoogle Scholar
  12. 12.
    Sun G, Joo Y, Chen Y, Niu D, Xie Y, Chen Y, Li H (2010) A hybrid solid-state storage architecture for the performance, energy consumption, and lifetime improvement. In: 2010 IEEE 16th international symposium on high performance computer architecture (HPCA), pp 1–12. doi: 10.1109/HPCA.2010.5416650
  13. 13.
    Zedlewski J, Sobti S, Garg N, Zheng F, Krishnamurthy A, Wang R (2003) Modeling hard-disk power consumption. In: Proceedings of the 2Nd USENIX conference on file and storage technologies, FAST ’03CA, USA, Berkeley, pp 217–230Google Scholar
  14. 14.
    El-Sayed N, Schroeder, B (2014) To checkpoint or not to checkpoint: Understanding energy-performance-i/o tradeoffs in hpc checkpointing. In: IEEE international conference on cluster computing (CLUSTER), pp 93–102. IEEE, New YorkGoogle Scholar
  15. 15.
    Deng Y, Lu L, Zou Q, Huang S, Zhou J (2014) Modeling the aging process of flash storage by leveraging semantic I/O. Future Gener Comput Syst 32:338–344. doi: 10.1016/j.future.2013.09.002 CrossRefGoogle Scholar
  16. 16.
    Li Y, Long D (2014) Which storage device is the greenest? Modeling the energy cost of I/O workloads. In: IEEE 22nd international symposium on modelling, analysis simulation of computer and telecommunication systems (MASCOTS), pp 100–105. doi: 10.1109/MASCOTS.2014.20
  17. 17.
    Contreras G, Martonosi M (2005) Power prediction for intel xscale processors using performance monitoring unit events. In: Proceedings of the 2005 international symposium on low power electronics and design, pp 221–226. IEEE, New YorkGoogle Scholar
  18. 18.
    Economou D, Rivoire S, Kozyrakis C, Ranganathan P (2006) Full-system power analysis and modeling for server environments. In: Proceedings of the workshop on modeling, benchmarking, and simulation. BostonGoogle Scholar
  19. 19.
    Li T, John LK (2003) Run-time modeling and estimation of operating system power consumption. In: Proceedings of the 2003 ACM SIGMETRICS international conference on measurement and modeling of computer systems, SIGMETRICS ’03. ACM, New York, NY, USA, pp 160–171. doi: 10.1145/781027.781048
  20. 20.
    Zhu Q, David F, Devaraj C, Li Z, Zhou Y, Cao P (2004) Reducing energy consumption of disk storage using power-aware cache management. In: Software, IEE Proceedings, pp 118–118. doi: 10.1109/HPCA.2004.10022
  21. 21.
    Narayanan D, Donnelly A, Rowstron A (2008) Write off-loading: practical power management for enterprise storage. Trans Storage 4(3):10:1–10:23. doi: 10.1145/1416944.1416949 CrossRefGoogle Scholar
  22. 22.
    Castagnetti A, Belleudy C, Bilavarn S, Auguin M (2010) Power consumption modeling for dvfs exploitation. In: Proceedings of the 2010 13th Euromicro conference on digital system design: architectures, methods and tools, DSD ’10. IEEE Computer Society, Washington, DC, USA, pp 579–586. doi: 10.1109/DSD.2010.55
  23. 23.
    Merkel A, Bellosa F (2006) Balancing power consumption in multiprocessor systems. In: Proceedings of the 1st ACM SIGOPS/EuroSys European conference on computer systems 2006, EuroSys ’06. ACM, New York, NY, USA, pp 403–414. doi: 10.1145/1217935.1217974
  24. 24.
    Wang HS, Peh LS, Malik S (2003) A power model for routers: Modeling alpha 21364 and infiniband routers. IEEE Micro 23(1):26–35. doi: 10.1109/MM.2003.1179895 CrossRefGoogle Scholar
  25. 25.
    Li J, Badam A, Chandra R, Swanson S, Worthington B, Zhang Q (2014) On the energy overhead of mobile storage systems. In: Proceedings of the 12th USENIX conference on file and storage technologies, FAST’14, pp 105–118. USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=2591305.2591316
  26. 26.
    Llopis P A powerful and modular tool for gathering live system information as time series. https://github.com/pllopis/pyprocstat
  27. 27.
    Barrachina S, Barreda M, Catalán S, Dolz M, Fabregat G, Mayo R, Quintana-Ortí E (2013) An integrated framework for power-performance analysis of parallel scientific workloads. In: ENERGY 2013, The 3rd international conference on smart grids, Green Communications and IT Energy-aware Technologies, pp 114–119Google Scholar
  28. 28.
    Paraver: the flexible analysis tool. http://www.cepba.upc.es/paraver. Accessed June 2015
  29. 29.
    The vampir performance analysis tool-set. https://www.vampir.eu/. Accessed June 2015
  30. 30.
    Dolz MF, Heidari M.R, Kuhn M, Fabregat G (2015) ArduPower: a low-cost wattmeter to improve energy efficiency of HPC applications. In: 5th International green and sustainable computing conference. Las Vegas, NV, USA (to appear) Google Scholar
  31. 31.
    llegro MicroSystems L (2015) ACS713: fully integrated, hall effect-based linear current sensor IC with 2.1 kVRMS voltage isolation and a low-resistance current conductor. http://www.allegromicro.com/en/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS713.aspx. Accessed June 2015
  32. 32.
    Corporation A (2015) ATmega2560: 8-bit Atmel microcontroller with 16/32/64 KB in-system programmable flash. http://www.atmel.com/devices/atmega2560.aspx. Accessed June 2015
  33. 33.
    Axboe J Flexible I/O tester. http://freecode.com/projects/fio
  34. 34.
    Dolz MF, Kunkel J, Chasapis K, Cataln S (2015) An analytical methodology to derive power models based on hardware and software metrics. Comput Sci Res Dev. doi: 10.1007/s00450-015-0298-8
  35. 35.
    Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 12:33–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pablo Llopis
    • 1
  • Manuel F. Dolz
    • 1
  • Javier Garcia Blas
    • 1
  • Florin Isaila
    • 1
  • Mohammad Reza Heidari
    • 2
  • Michael Kuhn
    • 2
  1. 1.Computer Science and Engineering DepartmentUniversidad Carlos IIILeganesSpain
  2. 2.Department of InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations