Advertisement

The Journal of Supercomputing

, Volume 72, Issue 4, pp 1477–1493 | Cite as

Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier

  • H. V. Jayashree
  • Himanshu ThapliyalEmail author
  • Hamid R. Arabnia
  • V. K. Agrawal
Article

Abstract

A reversible logic has application in quantum computing. A reversible logic design needs resources such as ancilla and garbage qubits to reconfigure circuit functions or gate functions. The removal of garbage qubits and ancilla qubits are essential in designing an efficient quantum circuit. In the literature, there are multiple designs that have been proposed for a reversible multiplication operation. A multiplication hardware is essential for the circuit design of quantum algorithms, quantum cryptanalysis, and digital signal processing applications. The existing designs of reversible quantum integer multipliers suffer from redundant garbage qubits. In this work, we propose a reversible logic based, garbage-free and ancilla qubit optimized design of a quantum integer multiplier. The proposed quantum integer multiplier utilizes a novel add and rotate methodology that is specially suitable for a reversible computing paradigm. The proposed design methodology is the modified version of a conventional shift and add method. The proposed design of the quantum integer multiplier incorporates add or no operation based on multiplier qubits and followed by a rotate right operation. The proposed design of the quantum integer multiplier produces zero garbage qubits and shows an improvement ranging from 60 to 90 % in ancilla qubits count over the existing work on reversible quantum integer multipliers.

Keywords

Reversible logic Multiplier Fredkin gate Quantum arithmetic 

References

  1. 1.
    Thomsen MK, Glück R, Axelsen HB (2010) Reversible arithmetic logic unit for quantum arithmetic. J Phys A Math Theor 43(38):382002MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Margolus N (1990) Parallel quantum computation. Complex Entropy Phys Inf Santa Fe Inst Stud Sci Complex 8:273–287Google Scholar
  3. 3.
    Maslov D (2005) Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov. Accessed 31 Aug 2015
  4. 4.
    Fredkin E, Toffoli T (2002) Conservative logic. Springer, New YorkCrossRefzbMATHGoogle Scholar
  5. 5.
    Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRefGoogle Scholar
  6. 6.
    Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum fredkin gate. Phys Rev A 53(4):2855–2856MathSciNetCrossRefGoogle Scholar
  7. 7.
    Draper TG, Kutin SA, Rains EM, Svore KM (2006) A logarithmic-depth quantum carry-lookahead adder. Quantum Inf Comput 6(4):351–369MathSciNetzbMATHGoogle Scholar
  8. 8.
    Takahashi Y, Kunihiro N (2005) A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf Comput 5(6):440–448MathSciNetzbMATHGoogle Scholar
  9. 9.
    Takahashi Y (2009) Quantum arithmetic circuits: a survey. IEICE Trans Fundam Electron Commun Comput Sci 92(5):1276–1283CrossRefGoogle Scholar
  10. 10.
    Takahashi Y, Tani S, Kunihiro N (2009) Quantum addition circuits and unbounded fan-out. arXiv:0910.2530
  11. 11.
    Choi B-S, Van Meter R (2011) On the effect of quantum interaction distance on quantum addition circuits. ACM J Emerg Technol Comput Syst (JETC) 7(3):11Google Scholar
  12. 12.
    Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithmetic operations. Phys Rev A 54(1):147MathSciNetCrossRefGoogle Scholar
  13. 13.
    Thapliyal H, Ranganathan N (2013) Design of efficient reversible logic-based binary and bcd adder circuits. ACM J Emerg Technol Comput Syst (JETC) 9(3):17Google Scholar
  14. 14.
    Thapliyal H, Jayashree H, Nagamani A, Arabnia HR (2013) Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on computational science XVII. Springer, New York, pp 73–97Google Scholar
  15. 15.
    Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication architecture (CIFM) for FPGAs and its reversible logic implementation. In: 49th IEEE international midwest symposium on circuits and systems (MWSCAS’06), vol 2. IEEE, pp 438–442Google Scholar
  16. 16.
    Thapliyal H, Arabnia HR, Srinivas M (2006) Reduced area low power high throughput bcd adders for ieee 754r format. arXiv:cs/0609036
  17. 17.
    Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using Fredkin & Feynman gates for industrial electronics and applications. arXiv:cs/0609029
  18. 18.
    Thapliyal H, Srinivas M, Arabnia HR (2005) Reversible logic synthesis of half, full and parallel subtractors. In: ESA, pp 165–181Google Scholar
  19. 19.
    Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: reversible logic synthesis of parallel binary adder-subtractor. In: Embedded systems and applications, pp 60–68Google Scholar
  20. 20.
    Thapliyal H, Srinivas M, Arabnia HR (2005) A reversible version of \(4 \times 4\) bit array multiplier with minimum gates and garbage outputs. In: Embedded systems and applications, pp 106–116Google Scholar
  21. 21.
    Thapliyal H, Arabnia HR, Srinivas M (2009) Efficient reversible logic design of BCD subtractors. In: Transactions on computational science III. Springer, New York, pp 99–121Google Scholar
  22. 22.
    Prasad AK, Shende V, Markov I, Hayes J, Patel KN (2006) Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4):277–293CrossRefGoogle Scholar
  23. 23.
    Golubitsky O, Maslov D (2012) A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans Comput 61(9):1341–1353MathSciNetCrossRefGoogle Scholar
  24. 24.
    Maslov D, Dueck GW (2004) Reversible cascades with minimal garbage. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(11):1497–1509CrossRefGoogle Scholar
  25. 25.
    Yang G, Song X, Hung WN, Perkowski MA (2008) Bi-directional synthesis of 4-bit reversible circuits. Comput J 51(2):207–215CrossRefGoogle Scholar
  26. 26.
    Maslov D, Saeedi M (2011) Reversible circuit optimization via leaving the boolean domain. IEEE Trans Comput-Aided Des Integr Circuits Syst 30(6):806–816CrossRefGoogle Scholar
  27. 27.
    Maslov D (2015) On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization. arXiv:1508.03273
  28. 28.
    Saeedi M, Zamani MS, Sedighi M, Sasanian Z (2010) Reversible circuit synthesis using a cycle-based approach. J Emerg Technol Comput Syst 6:13:1–13:26CrossRefGoogle Scholar
  29. 29.
    Hung WN, Song X, Yang G, Yang J, Perkowski M (2006) Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans Comput-Aided Des 25(9):1652–1663CrossRefGoogle Scholar
  30. 30.
    Zomorodi Moghadam M, Navi K (2012) Ultra-area-efficient reversible multiplier. Microelectron J 43(6):377–385CrossRefGoogle Scholar
  31. 31.
    Bhagyalakshmi H, Venkatesha M (2012) Optimized multiplier using reversible multi-control input Toffoli gates. Int J VLSI Des Commun Syst 3(6):27–40Google Scholar
  32. 32.
    Panchal VK, Nayak VH (2014) Analysis of multiplier circuit using reversible logic. Int J Sci Res Dev 1(6):279–284Google Scholar
  33. 33.
    Rangaraju H, Suresh AB, Muralidhara K (2013) Design of efficient reversible multiplier. In: Advances in computing and information technology. Springer, New York, pp 571–579Google Scholar
  34. 34.
    Mamataj S, Das B, Chandran S (2015) An approach for designing an optimized reversible parallel multiplier by reversible gates. In: Computational advancement in communication circuits and systems. Springer, New York, pp 345–355Google Scholar
  35. 35.
    Sultana J, Mitra SK, Chowdhury AR (2015) On the analysis of reversible booth’s multiplier. In: 2015 28th international conference on VLSI design (VLSID). IEEE, pp 170–175Google Scholar
  36. 36.
    Thapliyal H, Srinivas M (2006) Novel reversible multiplier architecture using reversible TSG gate. arXiv:cs/0605004
  37. 37.
    Banerjee A, Das DK (2013) The design of reversible multiplier using ancient indian mathematics. In: 2013 international symposium on electronic system design (ISED). IEEE, pp 31–35Google Scholar
  38. 38.
    Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693Google Scholar
  39. 39.
    Zhou R, Shi Y, Wang H, Cao J (2011) Transistor realization of reversible ZS series gates and reversible array multiplier. Microelectron J 42(2):305–315CrossRefGoogle Scholar
  40. 40.
    Portugal R, Figueiredo C (2006) Reversible Karatsubas algorithm. J Univers Comput Sci 12(5):499–511MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. V. Jayashree
    • 1
  • Himanshu Thapliyal
    • 2
    Email author
  • Hamid R. Arabnia
    • 3
  • V. K. Agrawal
    • 4
  1. 1.Department of ECEPES Institute of TechnologyBangaloreIndia
  2. 2.Department of Electrical and Computer EngineeringUniversity of KentuckyLexingtonUSA
  3. 3.Department of Computer ScienceUniversity of GeorgiaAthensUSA
  4. 4.Department of ISEPES Institute of TechnologyBangaloreIndia

Personalised recommendations