The Journal of Supercomputing

, Volume 71, Issue 3, pp 952–965 | Cite as

A fully parallelized scheme of constructing independent spanning trees on Möbius cubes

  • Jinn-Shyong Yang
  • Meng-Ru Wu
  • Jou-Ming Chang
  • Yu-Huei Chang
Article

Abstract

A set of spanning trees in a graph is said to be independent (ISTs for short) if all the trees are rooted at the same node \(r\) and for any other node \(v(\ne r)\), the paths from \(v\) to \(r\) in any two trees are node-disjoint except the two end nodes \(v\) and \(r\). It was conjectured that for any \(n\)-connected graph there exist \(n\) ISTs rooted at an arbitrary node. Let \(N=2^n\) be the number of nodes in the \(n\)-dimensional Möbius cube \(MQ_n\). Recently, for constructing \(n\) ISTs rooted at an arbitrary node of \(MQ_n\), Cheng et al. (Comput J 56(11):1347–1362, 2013) and (J Supercomput 65(3):1279–1301, 2013), respectively, proposed a sequential algorithm to run in \({\mathcal O}(N\log N)\) time and a parallel algorithm that takes \({\mathcal O}(N)\) time using \(\log N\) processors. However, the former algorithm is executed in a recursive fashion and thus is hard to be parallelized. Although the latter algorithm can simultaneously construct \(n\) ISTs, it is not fully parallelized for the construction of each spanning tree. In this paper, we present a non-recursive and fully parallelized approach to construct \(n\) ISTs rooted at an arbitrary node of \(MQ_n\) in \({\mathcal O}(\log N)\) time using \(N\) nodes of \(MQ_n\) as processors. In particular, we derive useful properties from the description of paths in ISTs, which make the proof of independency to become easier than ever before.

Keywords

Independent spanning trees Interconnection networks Möbius cubes Parallel algorithms 

References

  1. 1.
    Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192CrossRefGoogle Scholar
  2. 2.
    Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and its implementation using a multi-stage switching box. In: Proceedings of the 7th annual international high performance computing conference. Calgary, Alberta, Canada, pp 349–357Google Scholar
  3. 3.
    Bao F, Funyu Y, Hamada Y, Igarashi Y (1998) Reliable broadcasting and secure distributing in channel networks. IEICE Trans Fundam Electron Commun Comput Sci E81-A(5):796–806Google Scholar
  4. 4.
    Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algorithms. Parallel Comput 21(11):1783–1805CrossRefGoogle Scholar
  5. 5.
    Chang J-M, Wang J-D, Yang J-S, Pai K-J (2014) A comment on “Independent spanning trees in crossed cubes”. Inf Process Lett 114(12):734–739CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chen X-B (2011) Parallel construction of optimal independent spanning trees on Cartesian product of complete graphs. Inf Process Lett 111(5):235–238CrossRefMATHGoogle Scholar
  7. 7.
    Cheng B, Fan J, Jia X, Jia J (2013) Parallel construction of independent spanning trees and an application in diagnosis on Möbius cubes. J Supercomput 65(3):1279–1301CrossRefGoogle Scholar
  8. 8.
    Cheng B, Fan J, Jia X, Wang J (2013) Dimension-adjacent trees and parallel construction of independent spanning trees on crossed cubes. J Parallel Distrib Comput 73(5):641–652CrossRefMATHGoogle Scholar
  9. 9.
    Cheng B, Fan J, Jia X, Zhang S (2013) Independent spanning trees in crossed cubes. Inf Sci 233:276–289CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Cheng B, Fan J, Jia X, Zhang S, Chen B (2013) Constructive algorithm of independent spanning trees on Möbius cubes. Comput J 56(11):1347–1362CrossRefGoogle Scholar
  11. 11.
    Cheriyan J, Maheshwari SN (1988) Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J Algorithms 9(4):507–537CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Cull P, Larson SL (1995) The Möbius cubes. IEEE Trans Comput 44(5):647–659CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Curran S, Lee O, Yu X (2006) Finding four independent trees. SIAM J Comput 35(5):1023–1058CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Fan J (1998) Diagnosability of the Möbius cubes. IEEE Trans Parallel Distrib Syst 9(9):923–928CrossRefGoogle Scholar
  15. 15.
    Fan J (2002) Hamilton-connectivity and cycle-embedding of the Möbius cubes. Inf Process Lett 82(2):113–117CrossRefMATHGoogle Scholar
  16. 16.
    Hsieh S-Y, Chang N-W (2006) Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges. IEEE Trans Comput 55(7):854–863CrossRefGoogle Scholar
  17. 17.
    Hsieh S-Y, Chen C-H (2004) Pancyclicity on Möbius cubes with maximal edge faults. Parallel Comput 30(3):407–421CrossRefMathSciNetGoogle Scholar
  18. 18.
    Huck A (1994) Independent trees in graphs. Gr Comb 10(1):29–45CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Huck A (1999) Independent trees in planar graphs. Gr Comb 15(1):29–77MATHMathSciNetGoogle Scholar
  20. 20.
    Itai A, Rodeh M (1988) The multi-tree approach to reliability in distributed networks. Inf Comput 79(1):43–59CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Iwasaki Y, Kajiwara Y, Obokata K, Igarashi Y (1999) Independent spanning trees of chordal rings. Inf Process Lett 69(3):155–160CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kim J-S, Lee H-O, Cheng E, Lipták L (2011) Optimal independent spanning trees on odd graphs. J Supercomput 56(2):212–225CrossRefGoogle Scholar
  23. 23.
    Kim J-S, Lee H-O, Cheng E, Lipták L (2011) Independent spanning trees on even networks. Inf Sci 181(13):2892–2905CrossRefMATHGoogle Scholar
  24. 24.
    Liu Y-J, Lan JK, Chou WY, Chen C (2011) Constructing independent spanning trees for locally twisted cubes. Theor Comput Sci 412(22):2237–2252CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Miura K, Nakano S, Nishizeki T, Takahashi D (1999) A linear-time algorithm to find four independent spanning trees in four connected planar graphs. Int J Found Comput Sci 10(2):195–210CrossRefMathSciNetGoogle Scholar
  26. 26.
    Nagai S, Nakano S (2001) A linear-time algorithm to find independent spanning trees in maximal planar graphs. IEICE Trans Fundam Electron Commun Comput Sci E84-A(5):1102–1109Google Scholar
  27. 27.
    Obokata K, Iwasaki Y, Bao F, Igarashi Y (1996) Independent spanning trees of product graphs and their construction. IEICE Trans Fundam Electron Commun Comput Sci E79-A(11):1894–1903Google Scholar
  28. 28.
    Rescigno AA (2001) Vertex-disjoint spanning trees of the star network with applications to fault-tolerance and security. Inf Sci 137:259–276CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Tang S-M, Wang Y-L, Leu Y-H (2004) Optimal independent spanning trees on hypercubes. J Inf Sci Eng 20(1):143–155MathSciNetGoogle Scholar
  30. 30.
    Tang S-M, Yang J-S, Wang Y-L, Chang J-M (2010) Independent spanning trees on multidimensional torus networks. IEEE Trans Comput 59(1):93–102CrossRefMathSciNetGoogle Scholar
  31. 31.
    Tsai C-H (2008) Embedding of meshes in Möbius cubes. Theor Comput Sci 401:181–190CrossRefMATHGoogle Scholar
  32. 32.
    Wang Y, Fan J, Zhou G, Jia X (2012) Independent spanning trees on twisted cubes. J Parallel Distrib Comput 72(1):58–69CrossRefMATHGoogle Scholar
  33. 33.
    Wang Y, Fan J, Jia X, Huang H (2012) An algorithm to construct independent spanning trees on parity cubes. Theor Comput Sci 465:61–72CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Werapun J, Intakosum S, Boonjing V (2012) An efficient parallel construction of optimal independent spanning trees on hypercubes. J Parallel Distrib Comput 72(12):1713–1724CrossRefMATHGoogle Scholar
  35. 35.
    Xu M, Xu J-M (2005) Edge-pancyclicity of Möbius cubes. Inf Process Lett 96(4):136–140CrossRefMATHGoogle Scholar
  36. 36.
    Xu J-M, Deng ZG (2005) Wide diameter of Möbius cubes. J Interconnect Netw 6(1):51–62CrossRefGoogle Scholar
  37. 37.
    Xu J-M, Ma M, Lü M (2006) Paths in Möbius cubes and crossed cubes. Inf Process Lett 97(3):94–97CrossRefMATHGoogle Scholar
  38. 38.
    Yang J-S, Chan H-C, Chang J-M (2011) Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discrete Appl Math 159(12):1254–1263CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Yang J-S, Chang J-M (2010) Independent spanning trees on folded hyper-stars. Networks 56(4):272–281CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Yang J-S, Chang J-M (2014) Optimal independent spanning trees on Cartesian product of hybrid graphs. Comput J 57(1):93–99CrossRefGoogle Scholar
  41. 41.
    Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2007) Reducing the height of independent spanning trees in chordal rings. IEEE Trans Parallel Distrib Syst 18(5):644–657CrossRefGoogle Scholar
  42. 42.
    Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2009) On the independent spanning trees of recursive circulant graphs \(G(cd^m, d)\) with \(d>2\). Theor Comput Sci 410(21–23):2001–2010CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Yang J-S, Chang J-M, Tang S-M, Wang Y-L (2010) Constructing multiple independent spanning trees on recursive circulant graphs \(G(2^m,2)\). Int J Found Comput Sci 21(1):73–90CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Yang J-S, Tang S-M, Chang J-M, Wang Y-L (2007) Parallel construction of optimal independent spanning trees on hypercubes. Parallel Comput 33(1):73–79CrossRefMathSciNetGoogle Scholar
  45. 45.
    Yang J-S, Wu M-R, Chang J-M, Chang Y-H (2014) Open source for “Constructing independent spanning trees on Möbius cubes”. http://ms.ntub.edu.tw/~spade/IST-MQ
  46. 46.
    Yang M-C, Li T-K, Tan JM, Hsu L-H (2005) Fault-tolerant pancyclicity of the Möbius cubes. IEICE Trans Fundam Electron Commun Comput Sci E88-A(1):346–352Google Scholar
  47. 47.
    Yang X, Megson GM, Evens DJ (2006) Pancyclicity of Möbius cubes with faulty nodes. Microprocess Microsyst 30(3):165–172CrossRefGoogle Scholar
  48. 48.
    Zehavi A, Itai A (1989) Three tree-paths. J Graph Theory 13(2):175–188CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Zhang Y-H, Hao W, Xiang T (2013) Independent spanning trees in crossed cubes. Inf Process Lett 113(18):653–658CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinn-Shyong Yang
    • 1
  • Meng-Ru Wu
    • 2
  • Jou-Ming Chang
    • 2
  • Yu-Huei Chang
    • 2
  1. 1.Department of Information ManagementNational Taipei University of BusinessTaipeiTaiwan
  2. 2.Institute of Information and Decision SciencesNational Taipei University of BusinessTaipeiTaiwan

Personalised recommendations