The Journal of Supercomputing

, Volume 71, Issue 6, pp 2138–2152 | Cite as

High-efficient video compression for social multimedia distribution

  • Xiangyang Ji
  • Sam Kwong
  • Bo-Wei Chen
  • Seungmin Rho
Article

Abstract

To reduce data transmission bandwidth and storage space, the compression of original video is a prerequisite for social multimedia content uploading and distribution. The paper proposes an efficient early detection algorithm of all-zero blocks to eliminate redundant computations in H.264/AVC video encoding. First, for DCT-like integer transforms, a general sufficient condition of early detection of all-zero blocks is given based on the sum of absolute differences of the prediction error block, which is a direct derivation of Sousa’s method. Then, by analyzing the dynamic ranges of different frequency components, we further refine the sufficient condition of early detection of all-zero blocks for DCT-like integer transforms and apply it to \(4\times 4\) and \(8\times 8\) DCT-like integer transforms in H.264/AVC. Experimental results show that the proposed algorithm for early detection of all-zero blocks outperforms Sousa’s method in complexity reduction, where computations in transform, quantization, inverse quantization and inverse transform are significantly reduced. In addition, the proposed general sufficient condition of early detection of all-zero blocks for H.264/AVC can also be easily extended to other forms of DCT-like integer transforms. As a result, better audience experience and more efficient analysis can be provided for social multimedia applications.

Keywords

Video coding DCT-like integer transform All-zero blocks  Early detection H.264/AVC 

References

  1. 1.
    Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576CrossRefGoogle Scholar
  2. 2.
    ITU-T Recommendation H.263 (1996) Video coding for low bitrate communicationGoogle Scholar
  3. 3.
    ISO/IEC JTC1 (1999) Coding of audio-visual objects-part 2: visual. ISO/IEC 14496–2 (MPEG-4 Part 2)Google Scholar
  4. 4.
    Chen Z, Xu J, He Y, Zheng J (2006) Fast integer-pel and fractional-pel motion estimation for H.264/AVC. J Vis Commun Image Represent 17:264–290 (special issue on emerging H.264/AVC video coding standard)Google Scholar
  5. 5.
    Kuo C-H, Shen M-Y, Kuo C-CJ (2006) Fast motion search with efficient inter-prediction mode decision for H.264. J Vis Commun Image Represent 17(2):217–242CrossRefGoogle Scholar
  6. 6.
    Yi X, Zhang J, Ling N, Shang W (2005) Improved and simplified fast motion estimation for JM. JVT-P021, ISO/IEC MPEG and ITU-T VCEGGoogle Scholar
  7. 7.
    Michael Tourapis A et al. (2005) Fast ME in the JM reference software. JVTP026, ISO/IEC MPEG and ITU-T VCEGGoogle Scholar
  8. 8.
    Yang L, Yu K, Li J, Li S (2005) An effective variable block-size early termination algorithm for H.264 video coding. IEEE Trans Circuits Syst Video Technol 15(6):784–788CrossRefGoogle Scholar
  9. 9.
    Grecos C, Yang M (2005) Fast inter mode prediction for P slices in the H.264 video coding standard. IEEE Trans Broadcast 51(2):256–263CrossRefGoogle Scholar
  10. 10.
    Kannangara C et al (2006) Low-complexity skip prediction for H.264 through Lagrangian cost estimation. IEEE Trans Circuits Syst Video Technol 16(2):202–208CrossRefGoogle Scholar
  11. 11.
    Kim C, Shih H-H, Kuo C-CJ (2006) Fast H.264 Intra-prediction mode selection using joint spatial and transform domain features. J Vis Commun Image Represent 17(2):291–310CrossRefGoogle Scholar
  12. 12.
    Jing X, Chau L (2004) Fast approach for H.264 inter mode decision. Electron Lett 40(17):1051–1052CrossRefGoogle Scholar
  13. 13.
    Wu D et al (2005) Fast intermode decision in H.264/AVC video coding. IEEE Trans Circuits Syst Video Technol 15(7):953–958CrossRefGoogle Scholar
  14. 14.
    Wiegand T et al (2003) Rate-constrained coder control and compression of video coding standards. IEEE Trans Circuits Syst Video Technol 13(7):688–703CrossRefGoogle Scholar
  15. 15.
    Marpe D, Wiegand T, Gordon S (2005) H.264/MPEG4-AVC fidelity range extensions: tools, profiles, performance, and application areas. IEEE international conference image processing (ICIP)Google Scholar
  16. 16.
    Zhou X, Yu Z, Yu S (1998) Method for detecting all-zero DCT coefficients ahead of discrete cosine transformation and quantization. Electron Lett 34(19):1839–1840CrossRefGoogle Scholar
  17. 17.
    Sousa LA (2000) General method for eliminating redundant computations in video coding. Electron Lett 36(4):306–307CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang Y, Zhou Y, Yang H (2004) Early detection method of all-zero integer transform coefficients. IEEE Trans Consum Electron 50(3):923–928CrossRefGoogle Scholar
  19. 19.
    Kim GY, Moon YH, Kim JH (2005) An improved early detection algorithm for all-zero blocks in H.264 video encoding. IEEE Trans Circuits Syst Video Technol 15(8):1053–1057CrossRefGoogle Scholar
  20. 20.
    Wang H, Kwong S, Kok C-W (2006) Efficient prediction algorithm of integer DCT coefficients for H.264/AVC optimization. IEEE Trans Circuits Syst Video Technol 16(4):547–552CrossRefGoogle Scholar
  21. 21.
    Ji X, Kwong S, Zhao D, Wang H, Jay Kuo C-C, Dai Q (2009) Early determination of zero-quantized \(8 \times 8\) DCT coefficients. IEEE Trans Circuits Syst Video Technol 19(12):1755–1765CrossRefGoogle Scholar
  22. 22.
    Srinivasan S, Hsu PJ, Holcomb T, Mukerjee K, Regunathan SL, Lin B, Liang J, Lee M-C, Ribas-Corbera J (2004) Windows media video 9: overview and application. Signal Process Image Commun 19(9):851–875Google Scholar
  23. 23.
    Fan L, Ma S, Wu F (2004) Overview of AVS video standard. IEEE Int Conf Multimed Expo 1:423–426Google Scholar
  24. 24.
    JM14.0, Joint model. http://iphome.hhi.de/suehring/tml/download/. Accessed 12 Nov 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiangyang Ji
    • 1
  • Sam Kwong
    • 2
  • Bo-Wei Chen
    • 3
  • Seungmin Rho
    • 4
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.City University of Hong KongHong KongChina
  3. 3.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  4. 4.Department of MultimediaSungkyul UniversityAnyangKorea

Personalised recommendations