Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Accelerating HEVC using heterogeneous platforms

  • 398 Accesses

  • 10 Citations

Abstract

The high efficiency video coding (HEVC) standard achieves double compression efficiency compared with H.264/advanced video coding at the cost of huge computational complexity. Parallelizing HEVC encoding is an efficient way of fulfilling this computational requirement. The parallelization algorithms considered in HEVC, such as Tiles or wavefront parallel processing (WPP), rely on creating picture partitions that can be processed concurrently in a multi-core architecture. However, this paper focuses on the design of a heterogeneous parallel architecture composed of a graphic processing unit (GPU) plus a multi-core central processing unit (CPU) to take advantage of these techniques. Experimental results indicate that our approach outperforms WPP in terms of speed-up and reduces the delay introduced by alternative techniques such as the group of pictures-based processing pattern. Moreover, the proposed algorithms obtain speed-up values of over \(4 \times \) on an Intel quad-core CPU and an NVIDIA GPU with negligible quality losses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Bossen F (2013) Common test conditions and software reference configurations (Doc. JCTVC-L1100). http://phenix.int-evry.fr/jct/doc_end_user/current_document.php?id=7281. Accessed 14 May 2013

  2. 2.

    Bossen F, Bross B, Suhring K, Flynn D (2012) HEVC complexity and implementation analysis. IEEE Trans Circuits Syst Video Technol 22(12):1685–1696. doi:10.1109/TCSVT.2012.2221255

  3. 3.

    Bross B, Han W, Ohm J, Sullivan G, Wang YK, Wiegand T (2013) High efficiency video coding (HEVC) text specification draft 10 (Doc. JCTVC-L1003). http://phenix.it-sudparis.eu/jct/doc_end_user/current_document.php?id=7243. Accessed 21 March 2013

  4. 4.

    Cheung NM, Fan X, Au O, Kung MC (2010) Video coding on multicore graphics processors. IEEE Signal Process Mag 27(2):79–89. doi:10.1109/MSP.2009.935416

  5. 5.

    Chi CC, Alvarez-Mesa M, Juurlink B, Clare G, Henry F, Pateux S, Schierl T (2012) Parallel scalability and efficiency of HEVC parallelization approaches. IEEE Trans Circuits Syst Video Technol 22(12):1827–1838. doi:10.1109/TCSVT.2012.2223056

  6. 6.

    Fang J, Varbanescu AL, Sips H (2013) Identifying the key features of Intel Xeon Phi: a comparative approach. Parallel and Distributed Systems Report Series PDS-2013-006, Delft University of Technology

  7. 7.

    W Feng, Manocha D (2007) High-performance computing using accelerators. Parallel Comput 33(10–11):645–647

  8. 8.

    Henry F, Pateux S (2011) Wavefront Parallel Processing (Doc. JCTVC-E196). http://phenix.int-evry.fr/jct/doc_end_user/current_document.php?id=2122. Accessed 25 March 2013

  9. 9.

    ITU-T, ISO/IEC JTC (2012) Information technology—coding of audio-visual objects—part 10: advanced video coding. ITU-T Recommendation H.264 and ISO/IEC 14496–10

  10. 10.

    JCT-VC (2013) HM reference Software. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/. Accessed 23 April 2013

  11. 11.

    Misra K, Segall A, Horowitz M, Xu S, Fuldseth A, Zhou M (2013) An overview of Tiles in HEVC. IEEE J Sel Top Signal Process 7(6):969–977. doi:10.1109/JSTSP.2013.2271451

  12. 12.

    Ohm J, Sullivan G, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards—including high efficiency Video Coding (HEVC). IEEE Trans Circuits Syst Video Technol 22(12):1669–1684. doi:10.1109/TCSVT.2012.2221192

  13. 13.

    Radicke S, Hahn J, Grecos C, Wang Q (2014) A highly-parallel approach on motion estimation for high efficiency video coding (HEVC). In: IEEE international conference on consumer electronics (ICCE), 2014, pp 187–188. doi:10.1109/ICCE.2014.6775965

  14. 14.

    Su H, Wu N, Zhang C, Wen M, Ren J (2011) A multilevel parallel intra coding for H.264/AVC based on CUDA. In: Sixth international conference on image and graphics (ICIG), 2011, pp 76–81. doi:10.1109/ICIG.2011.99

  15. 15.

    Wang X, Song L, Chen M, Yang J (2013) Paralleling variable block size motion estimation of HEVC on CPU plus GPU platform. In: IEEE international conference on multimedia and expo workshops (ICMEW), 2013, pp 1–5. doi:10.1109/ICMEW.2013.6618412

  16. 16.

    Yan C, Dai F, Zhang Y (2011) Parallel deblocking filter for H.264/AVC on the TILERA many-core systems. In: Advances in multimedia modeling, lecture notes in computer science, vol 6523, Springer, Berlin, pp 51–61. doi:10.1007/978-3-642-17832-0_6

  17. 17.

    Yan C, Zhang Y, Dai F, Li L (2013) Highly Parallel Framework for HEVC motion estimation on many-core platform. In: Data compression conference (DCC), 2013, pp 63–72. doi:10.1109/DCC.2013.14

  18. 18.

    Yu Q, Zhao L, Ma S (2012) Parallel AMVP candidate list construction for HEVC. In: Visual communications and image processing (VCIP), 2012 IEEE, pp 1–6. doi:10.1109/VCIP.2012.6410775

Download references

Author information

Correspondence to Gabriel Cebrián-Márquez.

Additional information

This work has been jointly supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Commission (FEDER funds) under the project TIN2012-38341-C04-04.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cebrián-Márquez, G., Hernández-Losada, J.L., Martínez, J.L. et al. Accelerating HEVC using heterogeneous platforms. J Supercomput 71, 613–628 (2015). https://doi.org/10.1007/s11227-014-1313-8

Download citation

Keywords

  • HEVC
  • Parallelization
  • GPU
  • Multicore
  • Heterogeneous computing