Advertisement

The Journal of Supercomputing

, Volume 70, Issue 1, pp 247–268 | Cite as

Visible watermarking with reversibility of multimedia images for ownership declarations

  • Fu-Hau Hsu
  • Min-Hao Wu
  • Cheng-Hsing Yang
  • Shiuh-Jeng Wang
Article

Abstract

Digital watermarking technology is primarily the joining of the rightful owner of the protected media. Once the media are suspected to be illegally used, an open algorithm can be used to extract the digital watermark for the purpose of showing the media’s ownership. From a hidden watermark in the media from the appearance point of view, general digital watermarking technologies can be divided into two categories: visible watermark technology and invisible watermark technology. Visual watermark technology embeds a watermark into the protected media to declare ownership and deter pirate behavior. In this paper, we propose a reversible visible watermark method, which embeds a binary-imaged watermark into gray-scale images to create a visible watermark. Not using complex calculations, this paper tries to simply change the pixel value to achieve the digital watermark, where our scheme is also against the possible detections with LSB-based manners in use. Furthermore, a reversible steganographic method is used to embed the watermarking information into the watermarking images. The watermark information can then be used to recover the original images.

Keywords

Visible Ownership Reversibility Watermarking Histogram 

Notes

Acknowledgments

This research was partially supported by the National Science Council of the Republic of China under the Grant NSC 100-2221-E-015-001-MY2-, NSC 102-2221-E-015-001-, 101-2221-E-008-028 -MY2, 100-2218-E-008 -013 -MY3, and NSC 101-2221-E-153-002-MY2.

References

  1. 1.
    Fridrich J, Goljan M, Du R (2001) Invertible authentication. In: Proceedings of SPIE security and watermarking of multimedia contents, pp 197–208Google Scholar
  2. 2.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. EURASIP J Appl Signal Process 2:185–196CrossRefGoogle Scholar
  3. 3.
    Celik MU, Sharma G, Tekalp AM, Saber E (2002) Reversible data hiding. In: Proceedings of IEEE international conference on image processing, pp 157–160Google Scholar
  4. 4.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14:253–266CrossRefGoogle Scholar
  5. 5.
    Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15:1042–1049CrossRefGoogle Scholar
  6. 6.
    Awrangjeb M, Kankanhalli MS (2004) Lossless watermarking considering the human visual system. Lect Notes Comput Sci 2939:329–336Google Scholar
  7. 7.
    Awrangjeb M, Kankanhalli MS (2005) Reversible watermarking using a perceptual model. J Electron Imaging 14:1–8CrossRefGoogle Scholar
  8. 8.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896CrossRefGoogle Scholar
  9. 9.
    Alattar M (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13:1147–1156MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chang C, Lu TC (2006) A difference expansion oriented data hiding scheme for restoring the original host images. J Syst Softw 79:1754–1766CrossRefGoogle Scholar
  11. 11.
    Weng S, Zhao Y, Pan JS, Ni R (2007) A novel reversible watermarking based on an integer transform. In: Proceedings of IEEE international conference on image processing, pp 241–244Google Scholar
  12. 12.
    Weng S, Zhao Y, Pan JS, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15:721–724CrossRefGoogle Scholar
  13. 13.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362CrossRefGoogle Scholar
  14. 14.
    Li YC, Yeh CM, Chang CC (2010) Data hiding based on the similarity between neighboring pixels with reversibility. Digit Signal Process 20:1116–1128CrossRefGoogle Scholar
  15. 15.
    Lin CC, Hsueh NL (2008) A lossless data hiding scheme based on three-pixel block differences. Pattern Recognit 41:1415–1425CrossRefzbMATHGoogle Scholar
  16. 16.
    Lin CC, Tai WL, Chang CC (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recognit 41(12):3582–3591CrossRefzbMATHGoogle Scholar
  17. 17.
    Tsai P, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143CrossRefzbMATHGoogle Scholar
  18. 18.
    Tseng HW, Hsieh CP (2009) Prediction-based reversible data hiding. Inf Sci 179(14):2460–2469CrossRefzbMATHGoogle Scholar
  19. 19.
    Zeng XT, Ping L, Li Z (2009) Lossless data hiding scheme using adjacent pixel difference based on scan path. J Multimed 4:145–152CrossRefGoogle Scholar
  20. 20.
    Yang CH, Tsai MH (2010) Improving histogram-based reversible data hiding by interleaving predictions. IET Image Process 4(4):223–234MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yang B, Lu ZM, Sun SH (2005) Reversible watermarking in the VQ-compressed domain. In: Proceedings of the Fifth IASTED international conference on visualization, imaging, and image processing (VIIP’2005), pp 298–303Google Scholar
  22. 22.
    Chen WJ, Huang WT (2009) VQ indexes compression and information hiding using hybrid lossless index coding. Digital Signal Process 19:433–443CrossRefGoogle Scholar
  23. 23.
    Lu ZM, Wang JX, Liu BB (2009) An improved lossless data hiding scheme based on image VQ-index residual value coding. J Syst Softw 82:1016–1024CrossRefGoogle Scholar
  24. 24.
    Lee CF, Chen HL, Lai SH (2010) An adaptive data hiding scheme with high embedding capacity and visual image quality based on SMVQ prediction through classification codebooks. Image Vis Comput 28:1293–1302CrossRefGoogle Scholar
  25. 25.
    Hu YJ, Kwong S, Huang J (2006) An algorithm for removable visible watermarking. IEEE Trans Circuits Syst Video Technol 16:129–133CrossRefGoogle Scholar
  26. 26.
    Hu Y, Jeon B (2006) Reversible visible watermarking and lossless recovery of original images. IEEE Trans Circuits Syst Video Technol 16(11):1423–1429CrossRefGoogle Scholar
  27. 27.
    Lin SD, Shie SC (2004) Improving robustness of visible watermarking schemes for images. In: The 2004 IEEE international symposium on consumer electronics, pp 11–14Google Scholar
  28. 28.
    Tsai HM, Chang LW (2007) A high secure reversible visible watermarking scheme. IEEE international conference on multimedia and expo, pp 2106–2109Google Scholar
  29. 29.
    Hu Y, Kwong S (2001) Wavelet domain adaptive visible watermarking. Electron. Lett. 37(20):1219–1220CrossRefGoogle Scholar
  30. 30.
    Liu TY, Tsai WH (2010) Generic lossless visible watermarking—a new approach. IEEE Trans Image Process 19(5):1224–1235MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang Y, Sun X, Yang H, Li C-T, Xiao R (2009) A contrast-sensitive reversible visible image watermarking technique. IEEE Trans Circuits Syst Video Technol 19(5):656–667CrossRefGoogle Scholar
  32. 32.
    Yip SK, Au OC, Ho CW, Wong HM (2006) Lossless visible watermarking. IEEE international conference on multimedia and expo, pp 853–856Google Scholar
  33. 33.
    Tsai HM, Chang LW (2010) Secure reversible visible image watermarking with authentication. Signal Process Image Commun 25(1):10–17MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tsai MJ (2009) A visible watermarking algorithm based on the content and contrast aware (COCOA) technique. J Vis Commun Image Represent 20:323–338CrossRefGoogle Scholar
  35. 35.
    Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10:781–783CrossRefGoogle Scholar
  36. 36.
    Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444CrossRefGoogle Scholar
  37. 37.
    Dumitrescu S, Wu X, Memon N (2002) On steganalysis of random LSB embedding in continuous-tone images. International conference on proceedings in image processing, pp 641–644Google Scholar
  38. 38.
    Fillatre L (2012) Adaptive steganalysis of least significant bit replacement in grayscale natural images. IEEE Trans Signal Process 60(2):556–569MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fu-Hau Hsu
    • 1
  • Min-Hao Wu
    • 1
  • Cheng-Hsing Yang
    • 2
  • Shiuh-Jeng Wang
    • 3
  1. 1.Department of Computer Science and Information EngineeringNational Central UniversityTaoyuan Taiwan
  2. 2.Department of Computer ScienceNational Pingtung University of EducationPingtung Taiwan
  3. 3.Department of Information ManagementCentral Police UniversityTaoyuan Taiwan

Personalised recommendations