Advertisement

The Journal of Supercomputing

, Volume 69, Issue 2, pp 955–975 | Cite as

PGSW-OS: a novel approach for resource management in a semantic web operating system based on a P2P grid architecture

  • Saeed Javanmardi
  • Mohammad Shojafar
  • Shahdad Shariatmadari
  • Jemal H. Abawajy
  • Mukesh Singhal
Article

Abstract

A web operating system is an operating system that users can access from any hardware at any location. A peer-to-peer (P2P) grid uses P2P communication for resource management and communication between nodes in a grid and manages resources locally in each cluster, and this provides a proper architecture for a web operating system. Use of semantic technology in web operating systems is an emerging field that improves the management and discovery of resources and services. In this paper, we propose PGSW-OS (P2P grid semantic Web OS), a model based on a P2P grid architecture and semantic technology to improve resource management in a web operating system through resource discovery with the aid of semantic features. Our approach integrates distributed hash tables (DHTs) and semantic overlay networks to enable semantic-based resource management by advertising resources in the DHT based upon their annotations to enable semantic-based resource matchmaking. Our model includes ontologies and virtual organizations. Our technique decreases the computational complexity of searching in a web operating system environment. We perform a simulation study using the Gridsim simulator, and our experiments show that our model provides enhanced utilization of resources, better search expressiveness, scalability, and precision.

Keywords

Web operating systems (Web OS) Ontology P2P grid  Cloud, resource management Semantic overlay network (SON) 

Notes

Acknowledgments

The authors of this paper would like to thank Miroslaw Korzeniowski at Wroclaw University of Technology, Damià Castellà (researcher and research fellow at the University of Lleida), and Yunjia Li (Ph.D. candidate and research fellow at the University of Southampton) for their kind comments and advice.

References

  1. 1.
    Tanenbaum A (1992) Modern operating systems. Prentice Hall PTR, Upper Saddle RiverzbMATHGoogle Scholar
  2. 2.
    Tanenbaum A (2002) Distributed system: principles and paradigms. Prentice Hall, New JerseyGoogle Scholar
  3. 3.
    Mufti A, Salah K (2002) Web operating system. In: Workshop on information and computer science, pp 279–287Google Scholar
  4. 4.
    Shamshirband Sh (2012) A distributed approach for coordination between traffic lights based on game theory. Intern Arab J Info Technol (IAJIT) 9(2):148–153Google Scholar
  5. 5.
    Vahdat A, Anderson Th, Dahlia M et al (1998) WebOS: operating system services for wide-area applications. In: Proceedings of the seventh IEEE symposium on high performance distributed computing (HPDC), Chicago, pp 52–63Google Scholar
  6. 6.
  7. 7.
    Armbrust M, Fox A, Griffith R et al (2009) Above the clouds: a Berkeley view of cloud computing. UC Berkeley Reliable Adaptive Distributed Systems Laboratory, University of California, BerkeleyGoogle Scholar
  8. 8.
    Rana S (2014) Technology and artitecture design of web based operating system. Intern J Info Technol Comput Sci Persp 2(4):741–743Google Scholar
  9. 9.
    Baccarelli E, Cordeschi N, Polli V (2013) Optimal self-adaptive QoS resource management in interference-affected multicast wireless networks. IEEE/ACM Trans Netw 21(6):1750–1759CrossRefGoogle Scholar
  10. 10.
    Pooranian Z, Shojafar M, Abawajy JH, Abraham A (2013) An efficient meta-heuristic algorithm for grid computing. Spring J Combinat Optim (JOCO). doi: 10.1007/s10878-013-9644-6
  11. 11.
    Coppens S et al (2014) A semantic workflow engine powered by grid reasoning. In: Proceedings of the international workshop on managing ubiquitous communications and servicesGoogle Scholar
  12. 12.
    Kourtesis D Jose, María AR, Iraklis P (2014) Semantic-based QoS management in cloud systems: current status and future challenges. Fut Gener Comput Syst 32:307–323CrossRefGoogle Scholar
  13. 13.
    Javanmardi S, Shariatmadari S, Mosleh M (2013) A novel decentralized fuzzy based approach for grid resource discovery. Intern J Innov Comput 1(1):23–32Google Scholar
  14. 14.
    Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scient Amer 284(5):34–43CrossRefGoogle Scholar
  15. 15.
    Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101CrossRefGoogle Scholar
  16. 16.
    McGuinness DL, Van Harmelen F (2004) OWL web ontology language overview, W3C recommendation, 10Google Scholar
  17. 17.
    Mosleh M, Shariatmadari Sh, Javanmardi S (2012) Resource management in web OS based on semantic web technology. Glob J Technol Optim 3:54–58Google Scholar
  18. 18.
    Doulkeridis Ch, Vlachou A, Norvag K, Vazirgiannis M (2010) Distributed semantic overlay networks. Handb Peer-to-Peer Netw 4:463–494CrossRefGoogle Scholar
  19. 19.
    Chen Sh, Du X, Ma F, Shen J (2005) A grid resource management approach based on P2P technology. In: Proceedings of the eighth international conference on high-performance computing in Asia-Pacific region (HPCASIA’05), pp 362–369Google Scholar
  20. 20.
    Shamshirband S, Patel A, Anuar NB, Kiah MLM (2014) Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks. Eng Appl Artif Intell. doi: 10.1016/j.engappai.2014.02.001
  21. 21.
    Gendai G, Xindong L (2010) Simple web OS system based on Ext framework and cloud computing. Intern Forum Info Technol Appl (IFITA) 1:448–450CrossRefGoogle Scholar
  22. 22.
    Chandra DG, Malaya DB (2012) A study on cloud OS. In: International conference on communication systems and network technologies, Rajkot, 11–13 May, pp 692–697Google Scholar
  23. 23.
    Wu Ch, Pan Y, Yu H, Chen H, Yu Ch (2011) One click to build an on demand virtual cluster in cloud web-based operating system with dynamic loading prediction scheduling algorithm, In: The second international conference on cloud computing, GRIDs, and virtualization, pp 13–19Google Scholar
  24. 24.
    Patel L, Singh G, Gupta R (2012) LINUX based cloud operating system. IJEIR 1(1):18–22Google Scholar
  25. 25.
    Jin-Neng W et al (2013) Heterogeneous diskless remote booting system on cloud operating system., Grid and pervasive computingSpringer, BerlinGoogle Scholar
  26. 26.
    Anudeep M (2012) Design and analysis of peer 2 peer operating system, Master thesis. Jawaharlal Nehru Technological University, HyderabadGoogle Scholar
  27. 27.
    Smets-Solanes JP, Cerin C (2011) SlapOS: a multi-purpose distributed cloud operating system based on an ERP billing model. In: IEEE international conference services computing (CSC), Washington 4–9 July, pp 765–766Google Scholar
  28. 28.
    Dai YS, Wang XL (2006) Optimal resource allocation on grid systems for maximizing service reliability using a genetic algorithms. Reliabil Eng Syst Safe 91(9):1071–1082CrossRefGoogle Scholar
  29. 29.
    Ejarque J, Micsik A, Sirvent R, Pallinger P, Kovacs L, Badia R (2010) Semantic resource allocation with historical data based predictions. In: The first international conference on cloud computing, GRIDs, and virtualization, pp 104–109Google Scholar
  30. 30.
    Mario C, Talia D (2004) Semantics and knowledge grids: building the next-generation grid. IEEE Intell Syst 19(1):56–63CrossRefGoogle Scholar
  31. 31.
    Andrade N, Santos-Neto E, Brasileiro F (2008) Scalable resource annotation in peer-to-peer grids, In: 18th International conference on peer-to-peer computing, (P2P ’08), Aachen, 8–11 September, pp 231–234Google Scholar
  32. 32.
    Di S, Wang CL (2012) Decentralized proactive resource allocation for maximizing throughput of P2P grid. Elsev J Parallel Distrib Comput 72(2):308–321CrossRefGoogle Scholar
  33. 33.
    Andrade N, Cirne W, Brasileiro F (2003) OurGrid: an approach to easily assemble grids with equitable resource sharing. Job scheduling strategies for parallel processing. Springer-Verlag, Berlin, pp 61–86Google Scholar
  34. 34.
    Butt A, Zhang R, Hu Y (2006) A self-organizing flock of condors. Elsev J Parallel Distrib Comput 66(1):145–161zbMATHCrossRefGoogle Scholar
  35. 35.
    Lawton G (2008) Moving the OS to the Web. Comput IEEE Comput Soc 41(3):16–19CrossRefGoogle Scholar
  36. 36.
    Sanchez F, García R, Bejar RF, Breis J (2009) An ontology, intelligent agent-based framework for the provision of semantic web services. Exp Syst Appl 36(2):3167–3187CrossRefGoogle Scholar
  37. 37.
    Cordeschi N, Shojafar M, Baccarelli E (2013) Energy-saving self-configuring networked data centers. Comput Netw 57(17):3479–3491CrossRefGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
    Sotomayor B, Montero R, Llorente I, Foster I (2009) Resource leasing and the art of suspending virtual machines, In: 11th IEEE inter-national conference on HPCC ’09, pp 59–68Google Scholar
  41. 41.
    Halinka T (2008) The openQRM user’s guide. http://www.openqrm.com/
  42. 42.
    Krone O, Schubiger S (1999) WEBRES: towards a web operating system. Springer, KiVSGoogle Scholar
  43. 43.
    Kapil G, et al (2012) Xml based lucid web operating system, In: IEEE international conference on engineering education: innovative practices and future trends (AICERA), pp 1–3Google Scholar
  44. 44.
    Ostrowski DA (2012) A scalable, lightweight webOS application framework, In: IEEE first international conference on internet operating systems (ICIOS), Irvin, 10–12 December, pp 5–8Google Scholar
  45. 45.
    Stefan T, Vinoski S (2010) Node.js: using JavaScript to build high-performance network programs. IEEE Inter Comput 14(6):80–83CrossRefGoogle Scholar
  46. 46.
    Anderson JC, Lehnardt J, Slater N (2010) CouchDB: the definitive guide. O’Reilly Media Inc, USAGoogle Scholar
  47. 47.
    Riad AM, Elminir HK, ElSoud MA, Sabbeh SF (2010) Sewos: a framework for semantic web operating system. Intern J Electr Comput Sci IJECS-IJENS 10(1):1–12Google Scholar
  48. 48.
    Riad AM, Elminir HK, ElSoud MA, Sabbeh SF (2011) SEWOS: bringing semantics into web operating system. IJCSI 8(3):16–19Google Scholar
  49. 49.
    Jun G, Chen Ch (2012) Research on chord searching algorithm base on cache strategy. Elsev Phys Procedia 25:905–910CrossRefGoogle Scholar
  50. 50.
    Stoica I, Morris R, Liben-Nowell D, Karger DR, Kaashoek MF, Dabek F, Balakrishnan H (2003) Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Netw 11(1):17–32CrossRefGoogle Scholar
  51. 51.
    Pooranian Z, Harounabadi A, Shojafar M, Hedayat N (2011) New hybrid algorithm for task scheduling in grid computing to decrease missed task. World Acad Sci Eng Technol 55:5–9Google Scholar
  52. 52.
    Meditskos G, Bassiliades N (2010) Structural and role-oriented web service discovery with taxonomies in OWL-S. IEEE Trans Knowl Data Eng (TKDE) 22(2):278–290CrossRefGoogle Scholar
  53. 53.
    Andreasen T, Bulskov H, Knappe R (2003) From ontology over similarity to query evaluation, In: 2nd CoLogNET-ElsNET symposium—questions and answers: theoretical and applied, perspectives, pp 39–50Google Scholar
  54. 54.
    Pooranian Z, Shojafar M, Javadi B (2012) Independent task scheduling in grid computing based on queen bee algorithm. IAES Int J Artif Intell 1(4):171–181. doi: 10.11591/ij-ai.v1i4.1229
  55. 55.
    Heine F, Hovestadt M, Kao O (2004) Towards ontology-driven P2P grid resource discovery, In: International IEEE/ACM workshop on grid computing, pp 76–83Google Scholar
  56. 56.
    Qureshi K, Rehman A, Manuel P (2011) Enhanced GridSim architecture with load balancing. Spring J Supercomput 57(3):265–275CrossRefGoogle Scholar
  57. 57.
    Lasbleiz J, Brillet E, Decaux O, Duvauferrier R (2011) Staging disease with Protégé 4: example of multiple myeloma. IRBM 32(6):329–331CrossRefGoogle Scholar
  58. 58.
    Eggemann N, Noble S (2011) The clustering coefficient of a scale free random graph. Discr Appl Math 159(10):953–965zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Baccarelli E, Cordeschi N, Patriarca T (2012) QoS stochastic traffic engineering for the wireless support of real-time streaming applications. Comput Netw 56(1):287–302CrossRefGoogle Scholar
  60. 60.
    Javanmardi S, Shojafar M, Shariatmadari Sh, Ahrabi SS (2014) FR TRUST: a fuzzy reputation based model for trust management in semantic P2P grids, inderscience. Intern J Grid Util Comput. http://arxiv.org/abs/1404.2632

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saeed Javanmardi
    • 1
  • Mohammad Shojafar
    • 2
  • Shahdad Shariatmadari
    • 3
  • Jemal H. Abawajy
    • 4
  • Mukesh Singhal
    • 5
  1. 1.Department of Computer Engineering, Dezful BranchIslamic Azad UniversityDezfulIran
  2. 2.Department of Information Engineering, Electronic and Telecommunication (DIET)Sapienza University of RomeRomeItaly
  3. 3.Department of Computer Engineering, Shiraz BranchIslamic Azad UniversityShirazIran
  4. 4.School of Information TechnologiesDeakin UniversityGeelongAustralia
  5. 5.Electrical Engineering and Computer ScienceUniversity of CaliforniaMercedUSA

Personalised recommendations