The Journal of Supercomputing

, Volume 69, Issue 1, pp 492–507 | Cite as

A queuing theory model for cloud computing

  • Jordi Vilaplana
  • Francesc Solsona
  • Ivan Teixidó
  • Jordi Mateo
  • Francesc Abella
  • Josep Rius


The ability to deliver guaranteed QoS (Quality of Service) is crucial for the commercial success of cloud platforms. This paper presents a model based on queuing theory to study computer service QoS in cloud computing. Cloud platforms are modeled with an open Jackson network that can be used to determine and measure the QoS guarantees the cloud can offer regarding the response time. The analysis can be performed according to different parameters, such as the arrival rate of customer services and the number and service rate of processing servers, among others. Detailed results for the model are presented. When scaling the system and depending on the types of bottleneck in the system, we show how our model can provide us with the best option to guarantee QoS. The results obtained confirm the usefulness of the model presented for designing real cloud computing systems.


Cloud computing Cloud architecture Scalability Queuing theory Quality of Service Simulation Validation 



This work was supported by the MEyC under contract TIN2011-28689-C02-02. Some of the authors are members of the research group 2009 SGR145, funded by the Generalitat de Catalunya.


  1. 1.
    Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards a cloud definition. ACM SIGCOMM Comput Commun Rev 39:50–55CrossRefGoogle Scholar
  2. 2.
    Xiong K, Perros H (2009) Service performance and analysis in cloud computing. In: Proceedings of IEEE World Conference Services, pp 693–700Google Scholar
  3. 3.
    Varia J (2010) Architection for the cloud: best practices. Amazon Web ServicesGoogle Scholar
  4. 4.
    Khazaei H, Misic J, Misic V (2012) Performance analysis of cloud computing centers using M/G/m/m+r.Queuing Systems. IEEE transactions on parallel and distributed systems, vol 23, no 5Google Scholar
  5. 5.
    Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58CrossRefGoogle Scholar
  6. 6.
    Martin J, Nilsson A (2002) On service level agreements for IP networks. In: Proceedings of the IEEE INFOCOMGoogle Scholar
  7. 7.
    Jackson JR (1957) Networks of waiting lines. Oper Res 5:518–521CrossRefGoogle Scholar
  8. 8.
    Jackson JR (1963) Jobshop-like queueing systems. Manage Sci 10:131–142CrossRefGoogle Scholar
  9. 9.
    Martinello M, Kaâniche M, Kanoun K (2005) Web service availability: impact of error recovery and traffic model. J Reliab Eng Syst Saf 89(1):6–16CrossRefGoogle Scholar
  10. 10.
    Beloglazov A, Buyya R (2012) Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr Comput Pract Exp 24(13):1397–1420CrossRefGoogle Scholar
  11. 11.
    Iosup A, Yigitbasi N, Epema D (2011) On the performance variability of production cloud services. 11th IEEE/ACM international symposium on cluster, cloud and grid, computing (CCGrid’2011), pp 104–113Google Scholar
  12. 12.
    Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Proceedings of the 1st ACM symposium on Cloud computing (SoCC ’10), pp 193–204Google Scholar
  13. 13.
    Slothouber L (1996) A model of web server performance. In: Proceedings of the fifth international world wide web conferenceGoogle Scholar
  14. 14.
    Yang B, Tan F, Dai Y, Guo S (2009) Performance Evaluation of cloud service considering fault recovery. In: Proceedings of the first international conference on cloud, computing (CloudCom’09), pp 571–576Google Scholar
  15. 15.
    Ma N, Mark J (1998) Approximation of the mean queue length of an M/G/c queueing system. Oper Res 43:158–165CrossRefMathSciNetGoogle Scholar
  16. 16.
    Karlapudi H, Martin J (2004) Web application performance prediction. In: Proceedings of the IASTED international conference on communication and computer networks, pp 281–286Google Scholar
  17. 17.
    Mei RD, Meeuwissen HB (2005) Modelling end-to-end Quality-of-Service for transaction-based services in multidomain environement. In: Proceedings of the 19th international teletraffic congress (ITC19), pp 1109–1121Google Scholar
  18. 18.
    Boxma OJ, Cohen JW, Huffel N (1979) Approximations of the Mean waiting time in an M=G=s queueing system. Oper Res 27:1115–1127CrossRefzbMATHGoogle Scholar
  19. 19.
    Vilaplana J, Solsona F, Abella F, Filgueira R, Rius J (2013) The cloud paradigm applied to e-health. BMC Med Inf Decis Making 13:35CrossRefGoogle Scholar
  20. 20.
    Burke PJ (1956) The output of a queuing system. Oper Res 4:699–704CrossRefMathSciNetGoogle Scholar
  21. 21.
    Mao M, Li J, Humphrey M (2010) Cloud auto-scaling with deadline and budget constraints. In: Proceedings of the 11th IEEE/ACM international conference on GRID, pp 41–48Google Scholar
  22. 22.
    Nah F (2004) A study on tolerable waiting time: how long are Web users willing to wait? Behav Inf Technol 23(3):153–163CrossRefGoogle Scholar
  23. 23.
    Sai Sowjanya T, Praveen D, Satish K, Rahiman A (2011) The queueing theory in cloud computing to reduce the waiting time. IJCSET, vol 1, no 3, pp 110–112Google Scholar
  24. 24.
    Kleinrock L (1975) Queueing systems: theory, vol 1. Wiley-Interscience, New YorkzbMATHGoogle Scholar
  25. 25.
    Barbeau M, Kranakis E (2007) Principles of ad-hoc networking. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Apache JMeter website. Accessed 10 March 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jordi Vilaplana
    • 1
  • Francesc Solsona
    • 1
  • Ivan Teixidó
    • 1
  • Jordi Mateo
    • 1
  • Francesc Abella
    • 2
  • Josep Rius
    • 3
  1. 1.Department of Computer ScienceUniversity of LleidaLleidaSpain
  2. 2.IRB LleidaLleidaSpain
  3. 3.ICG SoftwareLleidaSpain

Personalised recommendations