The Journal of Supercomputing

, Volume 68, Issue 1, pp 414–442 | Cite as

Managing power constraints in a single-core scenario through power tokens

  • Juan M. Cebrián
  • Daniel Sánchez
  • Juan L. Aragón
  • Stefanos Kaxiras


Current microprocessors face constant thermal and power-related problems during their everyday use, usually solved by applying a power budget to the processor/core. Dynamic voltage and frequency scaling (DVFS) has been an effective technique that allowed microprocessors to match a predefined power budget. However, the continuous increase of leakage power due to technology scaling along with low resolution of DVFS makes it less attractive as a technique to match a predefined power budget as technology goes to deep-submicron. In this paper, we propose the use of microarchitectural techniques to accurately match a power constraint while maximizing the energy-efficiency of the processor. We will predict the processor power dissipation at cycle level (power token throttling) or at a basic block level (basic block level mechanism), using the dissipated power translated into tokens to select between different power-saving microarchitectural techniques. We also introduce a two-level approach in which DVFS acts as a coarse-grain technique to lower the average power dissipation towards the power budget, while microarchitectural techniques focus on removing the numerous power spikes. Experimental results show that the use of power-saving microarchitectural techniques in conjunction with DVFS is up to six times more precise, in terms of total energy consumed over the power budget, than only using DVFS to match a predefined power budget.


Hardware Power management Power budget DVFS  Energy efficiency Power estimation 



This work was supported by the Spanish MEC, MICINN and EU Commission FEDER funds under Grants CSD2006-00046 and TIN2009-14475-C04. Also by the EU-FP7 ICT Project “Embedded Reconfigurable Architecture (ERA)”, contract No. 249059. Finally, the EU-FP7 HiPEAC funded an internship of J.M. Cebrián at U. Uppsala.


  1. 1.
    Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C. Intel CorporationGoogle Scholar
  2. 2.
    Aragon JL, Gonzalez J, Gonzalez A (2003) Power-aware control speculation through selective throttling. In: Proceedings of the 9th international symposium on high-performance computer, architecture, pp 103–112. doi: 10.1109/HPCA.2003.1183528
  3. 3.
    Bacha A, Teodorescu R (2013) Dynamic reduction of voltage margins by leveraging on-chip ecc in itanium ii processors. In: Proceedings of the 40th annual international symposium on computer architecture, ISCA ’13. ACM, New York, pp 297–307. doi: 10.1145/2485922.2485948
  4. 4.
    Baniasadi A, Moshovos A (2001) Instruction flow-based front-end throttling for power-aware high-performance processors. In: Proceedings of the international symposium on low power electronics and design, pp 16–21. doi: 10.1109/LPE.2001.945365
  5. 5.
    Brooks DM, Bose P, Schuster SE, Jacobson H, Kudva PN, Buyuktosunoglu A, Wellman JD, Zyuban V, Gupta M, Cook PW (2000) Power-aware microarchitecture: design and modeling challenges for next-generation microprocessors. IEEE Micro 20:26–44. doi: 10.1109/40.888701. Google Scholar
  6. 6.
    Casmira J, Grunwald D (2000) Dynamic instruction scheduling slack. In: Proceedings of the KoolChips workshopGoogle Scholar
  7. 7.
    Cebrian JM, Aragon JL, Garcia JM, Petoumenos P, Kaxiras S (2009) Efficient microarchitecture policies for accurately adapting to power constraints. In: Proceedings of the IEEE international parallel & distributed processing, symposium, pp 1–12. doi: 10.1109/IPDPS.2009.5161022
  8. 8.
    Donald J, Martonosi M (2006) Techniques for multicore thermal management: classification and new exploration. In: Proceedings of the 33rd international symposium on computer, architecture, pp 78–88. doi: 10.1109/ISCA.2006.39
  9. 9.
    Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K, Burger D (2011) Dark silicon and the end of multicore scaling. In: Proceedings of the 38th annual international symposium on computer architecture, ISCA ’11. ACM, New York, pp 365–376. doi: 10.1145/2000064.2000108
  10. 10.
    Homayoun H, Kontorinis V, Shayan A, Lin TW, Tullsen D (2012) Dynamically heterogeneous cores through 3d resource pooling. In: 2012 IEEE 18th international symposium on high performance computer architecture (HPCA), pp 1–12. doi: 10.1109/HPCA.2012.6169037
  11. 11.
    Isci C, Buyuktosunoglu A, Cher CY, Bose P, Martonosi M (2006) An analysis of efficient multi-core global power management policies: maximizing performance for a given power budget. In: Proceedings of the 39th annual IEEE/ACM international symposium on microarchitecture, pp 347–358. doi: 10.1109/MICRO.2006.8
  12. 12.
    Kim W, Gupta MS, Wei GY, Brooks D (2008) System level analysis of fast, per-core dvfs using on-chip switching regulators. In: Proceedings of the IEEE 14th international symposium on high performance computer, architecture, pp 123–134. doi: 10.1109/HPCA.2008.4658633
  13. 13.
    Kontorinis V, Shayan A, Tullsen DM, Kumar R (2009) Reducing peak power with a table-driven adaptive processor core. In: Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture, MICRO 42. ACM, New York, pp 189–200. doi: 10.1145/1669112.1669137
  14. 14.
    Li S, Ahn JH, Strong RD, Brockman JB, Tullsen DM, Jouppi NP (2009) Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42th international symposium on microarchitecture, pp 469–480Google Scholar
  15. 15.
    Macken P, Degrauwe M, Van Paemel M, Oguey H (1990) A voltage reduction technique for digital systems. In: Proceedings of the 37th IEEE international solid-state circuits conference. Digest of Technical Papers, pp 238–239. doi: 10.1109/ISSCC.1990.110213
  16. 16.
    Manne S, Klauser A, Grunwald D (1998) Pipeline gating: speculation control for energy reduction. In: Proceedings of the 25th, annual international symposium on computer architecture, pp 132–141. doi: 10.1109/ISCA.1998.694769
  17. 17.
    Najeeb K, Konda VVR, Hari SKS, Kamakoti V, Vedula VM (2007) Power virus generation using behavioral models of circuits. In: Proceedings of the 25th IEEE VLSI test symmposium, VTS ’07. IEEE Computer Society, Washington, pp 35–42. doi: 10.1109/VTS.2007.49
  18. 18.
    Sartori J, Kumar R (2009) Three scalable approaches to improving many-core throughput for a given peak power budget. In: HiPC’09, pp 89–98Google Scholar
  19. 19.
    Sartori J, Ahrens B, Kumar R (2012) Power balanced pipelines. In: 2012 IEEE 18th international symposium on high performance computer architecture (HPCA), pp 1–12. doi: 10.1109/HPCA.2012.6169032
  20. 20.
    Sasanka R, Hughes CJ, Adve SV (2002) Joint local and global hardware adaptations for energy. In: Proceedings of the 10th international conference on architectural support for programming languages and operating systems, ASPLOS-X. ACM, New York, pp 144–155. doi: 10.1145/605397.605413
  21. 21.
    Semeraro G, Magklis G, Balasubramonian R, Albonesi DH, Dwarkadas S, Scott ML (2002) Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In: Proceedings of the 8th international high-performance computer architecture, symposium, pp 29–40. doi: 10.1109/HPCA.2002.995696
  22. 22.
    Simunic T, Benini L, Acquaviva A, Glynn P, de Micheli G (2001) Dynamic voltage scaling and power management for portable systems. In: Proceedings on design automation conference, pp 524–529. doi: 10.1109/DAC.2001.156195
  23. 23.
    Tune E, Liang D, Tullsen DM, Calder B (2001) Dynamic prediction of critical path instructions. In: Proceedings of the 7th international symposium on high-performance computer, architecture, pp 185–195. doi: 10.1109/HPCA.2001.903262
  24. 24.
    Winter JA, Albonesi DH (2008) Addressing thermal nonuniformity in smt workloads. ACM Trans Archit Code Optim 5:4.1-4.28. doi: 10.1145/1369396.1369400
  25. 25.
    Wu Q, Juang P, Martonosi M, Clark DW (2005) Voltage and frequency control with adaptive reaction time in multiple-clock-domain processors. In: Proceedings of the 11th international symposium on high-performance computer, architecture, pp 178–189. doi: 10.1109/HPCA.2005.43

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Juan M. Cebrián
    • 1
  • Daniel Sánchez
    • 1
  • Juan L. Aragón
    • 1
  • Stefanos Kaxiras
    • 2
  1. 1.University of MurciaMurciaSpain
  2. 2.University of UppsalaUppsalaSweden

Personalised recommendations