The Journal of Supercomputing

, Volume 66, Issue 1, pp 262–283 | Cite as

QoS based resource provisioning and scheduling in grids



As Grid computing has emerged as a technology for providing the computational resources to industries and scientific projects, new requirements arise. Nowadays, resource management has become an important research area in the Grid computing environment. To provision the appropriate resource to a corresponding application is a tedious task. So, it is important to check and verify the provisioning of the resource before the application’s execution. In this paper, a resource provisioning framework has been presented that offers a resource provisioning policy, which caters to provisioned resource allocation and resource scheduling. The framework has been formally specified and verified. Formal specification and verification of the framework helps in predicting possible errors before the scheduling process itself, and thus results in efficient resource provisioning and scheduling of Grid resources.


Grid computing Quality of service Resource provisioning Resource scheduling 


  1. 1.
    Foster I, Kesselman C (2004) The grid: blueprint for a future computing infrastructure. Morgan Kaufmann, San Mateo Google Scholar
  2. 2.
    Aron R, Chana I (2012) Formal QoS policy based grid resource provisioning framework. J Grid Comput 10(2):249–264 CrossRefGoogle Scholar
  3. 3.
    Rajni A, Chana I (2010) Resource provisioning and scheduling in grids: issues, challenges and future directions. In: International conference on computer and communication technology (ICCCT’10), MNNIT, Allahabad, 17–19 September 2010, pp 306–310 Google Scholar
  4. 4.
    Dusseau ACA (1998) Implicit co scheduling: coordinated scheduling with implicit information in distributed systems. PhD thesis, University of California at Berkeley Google Scholar
  5. 5.
    Rumbaugh J, Jacobson I, Booch G (2004) The unified modeling language reference manual, 2nd edn. Addison-Wesley, Pearson Education, Upper Saddle River. PGrady booch, object-oriented analysis and design Google Scholar
  6. 6.
    Khateeb AA, Abdullah R, Rashid AN (2009) Job type approach for deciding job scheduling in grid computing systems. J Comput Sci 5(10):745–750 CrossRefGoogle Scholar
  7. 7.
    Cowling P, Kendall G, Soubeiga E (2001) A hyper-heuristic approach to scheduling a sales summit. In: Proceedings of the 3rd international conference on the practice and theory of automated timetabling. Lecture notes in computer science, vol 2079. Springer, Berlin, pp 176–190 CrossRefGoogle Scholar
  8. 8.
    Gonzalez JA, Serna M, Xhafa F (2007) A hyper-heuristic for schedulingin dependent jobs in computational grids. In: International conference on software and data technologies (ICSOFT) Google Scholar
  9. 9.
    Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(2):52–67 CrossRefGoogle Scholar
  10. 10.
    Liu Y, Passino KM (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles and emergent behaviors. J Optim Theory Appl 115(3):603–628 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Aron R, Chana I (2012) Bacterial foraging based hyper-heuristic for resource scheduling in grid computing. Future generation of computer systems. Elsevier, Amsterdam. doi:10.1016/j.future.2012.09.005 Google Scholar
  12. 12.
    Hesselink WH (2004) Introduction to the model checker spin, 4th October 2004. Online at
  13. 13.
    Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23:279–295 CrossRefGoogle Scholar
  14. 14.
    Vecchiola C, Chu X, Buyya R (2009) Aneka: a software platform for .NET-based cloud computing. In: Gentzsch W, Grandinetti L, Joubert G (eds) High speed and large scale scientific computing. IOS, Lansdale, pp 267–295 Google Scholar
  15. 15.
  16. 16.
    Dasgupta G, Dasgupta K, Purohit A, Viswanathan B (2006) QoS-GRAF: a framework for QoS based grid resource allocation with failure provisioning. In: Proceedings of 14th IEEE international workshop on QoS (IWQOS’06), 19–21 June, New Heaven, CT, USA, pp 281–283 Google Scholar
  17. 17.
    Raicu I, Zhao Y, Dumitrescu C, Foster I, Wilde M (2007) Dynamic resource provisioning in grid environments. In: TeraGrid conference, June 2007 Google Scholar
  18. 18.
    Assuncao MD, Buyya R (2009) Performance analysis of allocation policies for intergrid resource provisioning. Inf Softw Technol 51(1):42–55 CrossRefGoogle Scholar
  19. 19.
    Foster I, Fidler M, Royd A, Sander V, Winkler L (2004) End-to-end quality of service for high-end applications. Comput Commun J 27(14):1375–1388 CrossRefGoogle Scholar
  20. 20.
    Lehman T, Sobieski J, Jabbari B (2006) DRAGON: a technique for service provisioning in heterogeneous grid networks. Communications Magazine, IEEE 44(3):84–90 CrossRefGoogle Scholar
  21. 21.
    Siddiqui M, Villazon A, Hofer J, Fahringer T (2005) GLARE: A grid activity registration, deployment and provisioning framework. In: Proceedings of ACM/IEEE conference on supercomputing, 12–18 November 2005 Google Scholar
  22. 22.
    Abraham A, Buyya R, Nath B (2000) Nature’s heuristics for scheduling jobs on computational grids. In: The 8th IEEE conference on advanced computing and communications, Cochin, India Google Scholar
  23. 23.
    Fidanova S, Durchova M (2006) Ant algorithm for grid scheduling problem. Lecture notes in computer science, vol 3743. Springer, Berlin, pp 405–412 Google Scholar
  24. 24.
    Lorpunmanee S, Sap MN, Abdullah AH, Chompoo-inwai C (2007) An ant colony optimization for dynamic job scheduling in grid environment. J Comput Inform Sci Eng 1(4):207–214 Google Scholar
  25. 25.
    Garg S, Konugurthi P, Buyya R (2008) A linear programming driven genetic algorithm for meta-scheduling on utility grids. In: Proceedings of the 16th international conference on advanced computing and communication (ADCOM 2008), Chennai, India. IEEE Press, New York, pp 14–17 Google Scholar
  26. 26.
    Garg SK, Buyya R, Siegel HJ (2010) Time and cost trade-off management for scheduling parallel applications on utility grids. Future Gener Comput Syst 26(8):1344–1355 CrossRefGoogle Scholar
  27. 27.
    Kolodziej J, Xhafa F (2012) Integration of task abortion and security requirements in GA-based meta-heuristics for independent batch grid scheduling. Comput Math Appl 63:350–364 CrossRefMATHGoogle Scholar
  28. 28.
    Kolodziej J, Xhafa F (2011) Meeting security and user behaviour requirements in grid scheduling, simulation modelling practice and theory. Int J Fed Eur Simul Soc 19:213–226 Google Scholar
  29. 29.
    Kolodziej J, Xhafa F (2011) Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population. Future Gener Comput Syst 27(8):1035–1046 CrossRefGoogle Scholar
  30. 30.
    Nudd G, Kerbyson D, Papaefstathiou E, Perry S, Harper J, Wilcox D (2000) Pace—a toolset for the performance prediction of parallel and distributed systems. Int J High Perform Comput Appl 14(3):228–251 CrossRefGoogle Scholar
  31. 31.
    Smith W, Foster I, Taylor V (1998) Predicting application run times using historical information. In: Proceedings of IPPS/SPDP’98 workshop on job scheduling strategies for parallel processing, FL, USA Google Scholar
  32. 32.
    Hotovy S (1996) Workload evolution on the Cornell theory center IBM SP2. In: Proceeding of job scheduling strategies for parallel processing workshop, pp 27–40 CrossRefGoogle Scholar
  33. 33.
    Schulzrinne H, Tschofenig H, Morris J, Cuellar J, Polk J, Rosenberg J (2007) Common policy: a document format for expressing privacy preferences. RFC 4745 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Computer Science & Engineering DepartmentThapar UniversityPatialaIndia

Personalised recommendations