The Journal of Supercomputing

, Volume 65, Issue 3, pp 1089–1103 | Cite as

Numerical simulation of pollutant transport in a shallow-water system on the Cell heterogeneous processor

  • Carlos H. GonzálezEmail author
  • Basilio B. Fraguela
  • Diego Andrade
  • José A. García
  • Manuel J. Castro


This paper presents an implementation, optimized for the Cell processor, of a finite volume numerical scheme for 2D shallow-water systems with pollutant transport. A description of the special architecture and programming required by the Cell processor motivates the methodology to develop optimized implementations for this platform. This process involves parallelization, data structure reorganization, explicit transfers of data and computation vectorization. Our implementation, tested using a realistic problem, achieves very good speedups with respect to the sequential execution on a standard CPU.


High performance computing Finite volume method Vectorization Parallelism Heterogeneous architectures 



This work was partially supported by the Science and Innovation Ministry of Spain (Projects TIN2010-16735, MTM2010-21135-C02-01 and MTM2009-11923), Xunta de Galicia CN2012/211 (partially supported by FEDER funds), and the FPU program of the Spanish Government (ref AP2009-4752). We thank Prof. Xavier Martorell and BSC for providing access to the MariCel system, and the PRACE prototype access program.


  1. 1.
    Audusse E, Bristeau MO (2003) Transport of pollutant in shallow water. A two time steps kinetic method. Modél Math Anal Numér 37:389–416 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Audusse E, Bouchut F, Bristeau M, Klein R, Perthame B (2004) A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J Sci Comput 25(6):2050–2065 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Benkhaldoun FI, Elmahi I, Seaid M (2007) Well-balanced finite volume schemes for pollutant transport on unstructured meshes. J Comput Phys 226:180–203 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bermúdez A, Vázquez ME (1994) Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 23:1049–1071 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bristeau MO, Perthame B (2001) Transport of pollutant in shallow water using kinetic schemes. ESAIM Proc 10:9–21 MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brodtkorb AR, Sætra ML, Altinakar M (2010) Efficient shallow water simulations on GPUs: implementation, visualization, verification and validation Google Scholar
  7. 7.
    Castro M, García-Rodríguez J, González-Vida J, Parés C (2006) A parallel 2D finite volume scheme for solving systems of balance laws with nonconservative products: application to shallow flows. Comput Methods Appl Mech Eng 195:2788–2815 zbMATHCrossRefGoogle Scholar
  8. 8.
    Castro M, García-Rodríguez J, González-Vida J, Parés C (2008) Solving shallow-water systems in 2D domains using Finite Volume methods and multimedia SSE instructions. J Comput Appl Math 221:16–32 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Castro MJ, Ortega S, de la Asunción M, Mantas JM, Gallardo JM (2010) GPU computing for shallow water flows simulation based on finite volume schemes. C R, Méc. doi: 10.1016/j.crme.2010.12.004 Google Scholar
  10. 10.
    Castro-Díaz MJ, Chacón T, Fernández Nieto ED, González-Vida JM, Parés C (2008) Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems. Application to the dam break of Aznalcóllar. Comput Methods Appl Mech Eng 197:3932–3950 zbMATHCrossRefGoogle Scholar
  11. 11.
    Geveler M, Ribbrock D, Göddeke D, Turek S (2010) Lattice-Boltzmann simulation of the shallow-water equations with fluid-structure interaction on multi- and many-core processors. In: Facing the multicore-challenge chap. Lecture notes in computer science, vol 6310. Springer, Berlin, pp 92–104 CrossRefGoogle Scholar
  12. 12.
    IBM, Sony, Toshiba (2006) Cell broadband engine architecture. IBM Google Scholar
  13. 13.
    Kurganov A, Petrova G (2007) A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun Math Sci 5(1):133–160 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kurganov A, Noelle S, Petrova G (2001) Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J Sci Comput 23:707–740 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  16. 16.
    Lobeiras J, Viñas M, Amor M, Fraguela BB, Arenaz M, García JA, Castro M (2012) Parallelization of shallow water simulations on current multi-threaded systems. Int J High Perform Comput. doi: 10.1177/1094342012464800 Google Scholar
  17. 17.
    Noelle S, Xing Y, Shu C (2007) High order well-balanced finite volume WENO schemes for shallow water equations with moving water. J Comput Phys 226:29–58 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Perthame B, Simeoni C (2001) A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38:201–231 MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rostrup S, Sterck HD (2010) Parallel hyperbolic PDE simulation on clusters: cell versus GPU. Comput Phys Commun 181(12):2164–2179 zbMATHCrossRefGoogle Scholar
  20. 20.
    Viñas M, Lobeiras J, Fraguela BB, Arenaz M, Amor M, García JA, Castro M, Doallo R (2012) Multi-GPU shallow water simulation with transport of contaminants. Concurr Comput. doi: 10.1002/cpe.2917 zbMATHGoogle Scholar
  21. 21.
    Xu Z, Shu CW (2006) Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant. SIAM J Numer Anal 46:1012–1039 MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carlos H. González
    • 1
    Email author
  • Basilio B. Fraguela
    • 1
  • Diego Andrade
    • 1
  • José A. García
    • 2
  • Manuel J. Castro
    • 3
  1. 1.Computer Architecture Group, Electronics and Systems Dept.Univ. da CoruñaA CoruñaSpain
  2. 2.Applied Mathematics Area, Mathematics Dept.Univ. da CoruñaA CoruñaSpain
  3. 3.Mathematical Analysis Dept.Univ. of MálagaMálagaSpain

Personalised recommendations