The Journal of Supercomputing

, Volume 64, Issue 2, pp 456–476 | Cite as

A maximum likelihood-based distributed protocol for passive RFID dense reader environments

Article

Abstract

In passive RFID Dense Reader Environments, a large number of passive RFID readers coexist in a single facility. Dense environments are particularly susceptible to reader-to-tag and reader-to-reader collisions. Both may degrade the system performance, decreasing the number of identified tags per time unit. Some proposals have been suggested to avoid or handle these collisions, but requiring extra hardware or making a non-efficient use of the network resources. This paper proposes MALICO, a distributed mechanism-based protocol that exploits a maximum-likelihood estimator to improve the performance of the well-known Colorwave protocol. Using the derivation of the joint occupancy distribution of urns and balls via a bivariate inclusion and exclusion formula, MALICO permits every reader to estimate the number of neighboring readers (potential colliding readers). This information helps readers to schedule the identification time with the aim at decreasing collision probability among neighboring readers. MALICO provides higher throughput than the distributed state-of-the-art proposals for dense reader environments and can be implemented in real RFID systems without extra hardware.

Keywords

RFID Reader collision problems Maximum likelihood estimate DCS Colorwave 

Notes

Acknowledgements

This work has been partially supported by the MICINN/FEDER project grant TEC2010-21405-C02-02/TCM (CALM) and the framework of the project from Fundación Séneca “Programa de Ayudas a Grupos de Excelencia de la Region de Murcia”, Plan Regional de Ciencia y Tecnología 2007/2010.

References

  1. 1.
    Finkenzeller K (2004) RFID handbook: fundamentals and applications in contactless smart cards and identification, 2nd edn. Wiley, New York Google Scholar
  2. 2.
    Wang G, Wang T, Jia W, Guo M, Li J (2010) Adaptive location updates for mobile sinks in wireless sensor networks. J Supercomput 47(2):127–145 CrossRefGoogle Scholar
  3. 3.
    ETSI EN 302 208 (2010) Version 1.3.1. Available online at: http://www.etsi.org
  4. 4.
    Leong KS, Ng ML, Cole PH (2005) The reader collision problem in RFID systems. In: Proceedings of IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications, pp 658–661 CrossRefGoogle Scholar
  5. 5.
    Yoon W, Vaidya NH (2010) RFID reader collision problem: performance analysis and medium access. Wirel Commun Mob Comput. doi:10.1002/wcm.972 Google Scholar
  6. 6.
    Wang D, Wang J, Zhao JY (2006) A novel solution to the reader collision problem in RFID system. In: Proceedings of IEEE international conference on wireless communications, networking and mobile computing, pp 1–4 Google Scholar
  7. 7.
    Chung HB, Mo H, Kim N, Pyo C (2007) An advanced RFID system to avoid collision of RFID reader, using channel holder and dual sensitivities. Microw Opt Technol Lett 49(11):2643–2647. doi:10.1002/mop.22808 CrossRefGoogle Scholar
  8. 8.
    Kim J, Lee W, Kim E, Kim D, Suh K (2007) Optimized transmission power control of interrogators for collision arbitration in UHF RFID systems. IEEE Commun Lett 11(1):22–24 CrossRefGoogle Scholar
  9. 9.
    Chen NK, Chen JL, Lee CC (2009) Array-based reader anti-collision scheme for highly efficient RFID network applications. Wirel Commun Mob Comput 9:976–987 CrossRefGoogle Scholar
  10. 10.
    Eom JB, Yim SB, Lee TJ (2009) An efficient reader anti-collision algorithm in dense RFID networks with mobile RFID readers. IEEE Trans Ind Electron 56(7):2326–2336 CrossRefGoogle Scholar
  11. 11.
    Montrucchio B, Rebaudengo M, Ferrero R, Gandino F (2010) Fair anti-collision protocol in dense RFID networks. In: Proceedings of third international EURASIP workshop on RFID technology, pp 101–105 Google Scholar
  12. 12.
    EPCGlobal (2008) EPC radio-frequency identity protocols Class-1 Generation-2 UHF RFID. Version 1.2.0. http://www.epcglobalinc.org
  13. 13.
    Hsu CH, Chen YM, Kang HJ (2008) Performance effective and low-complexity redundant reader detection in wireless RFID networks. EURASIP J Wirel Commun Netw 2008:1–19 CrossRefGoogle Scholar
  14. 14.
    Birari SM, Iyer S (2005) Pulse: a mac protocol for RFID networks. In: Proceedings of international workshop on RFID and ubiquitous sensor networks Google Scholar
  15. 15.
    Liu L, Yan D, Lai X, Lai S (2008) A new kind of RFID reader anti-collision algorithm. In: Proceedings of IEEE international conference on circuits and systems for communications, pp 559–563 Google Scholar
  16. 16.
    Kwang-il H, Kyung-tae K, Doo-seop E, Sangbin L, Sunshin A (2009) Distributed tag access with collision avoidance among mobile RFID readers. In: Proceedings of international conference on computational science and engineering, pp 621–626 Google Scholar
  17. 17.
    Sungjun K, Sangbin L, Sunshin A (2006) Reader collision avoidance mechanism in ubiquitous sensor and RFID networks. In: Proceedings of international workshop on wireless network testbeds, experimental evaluation and characterization, pp 101–102 Google Scholar
  18. 18.
    Waldrop J, Engels DW, Sarma SE (2003) Colorwave: an anticollision algorithm for the reader collision problem. In: Proceedings of IEEE international conference on communications, pp 1206–1210 Google Scholar
  19. 19.
    Gandino F, Ferrero R, Montrucchio B, Rebaudengo M (2011) Probabilistic DCS: an RFID reader to reader anti-collision protocol. J Netw Comput Appl 34(3):821–832 CrossRefGoogle Scholar
  20. 20.
    Waldrop J, Engels DW, Sarma SE (2003) Colorwave: a MAC for RFID reader networks. In: Proceedings of IEEE conference on wireless communications and networking, vol 3, pp 1701–1704 Google Scholar
  21. 21.
    Bueno-Delgado MV, Vales-Alonso J, Angerer C, Rupp M (2010) Study of RFID schedulers in dense reader environments. In: Proceedings of IEEE international conference on industrial technology (ICIT), Valparaiso, Chile, March 2010 Google Scholar
  22. 22.
    Drodi R (2005). RFID white paper. Available online at: http://www.mtiwe.com
  23. 23.
    EPCGlobal Network. Avaliable online at: http://www.epcglobalinc.org
  24. 24.
    Charalambides ChA (2005) Derivation of a joint occupancy distribution via a bivariate inclusion and exclusion formula. Metrika 62(2–3):149–160 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Abramson N (1973) Packet switching with satellites. In: Proceedings of the national computer conference and exposition, New York, USA, June 1973 Google Scholar
  26. 26.
    Vales-Alonso J, Bueno-Delgado MV, Egea-Lopez E, Gonzalez-Castano FJ, Alcaraz J (2011) Multiframe maximum-likelihood tag estimation for RFID anticollision protocols. IEEE Trans Ind Inform 7(3):487–496 CrossRefGoogle Scholar
  27. 27.
    Saleri F, Quarteroni A (2003) Scientific computing with matlab. Springer, New York MATHGoogle Scholar
  28. 28.
    Bueno-Delgado MV, Vales-Alonso J (2011) On the optimal frame-length configuration on passive RFID systems. J Netw Comput Appl 34(3):854–876 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Communications and Information Technologies Department, Telecommunications FacultyUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations