The Journal of Supercomputing

, Volume 63, Issue 2, pp 367–384 | Cite as

Multi-domain job coscheduling for leadership computing systems

  • Wei Tang
  • Narayan Desai
  • Venkatram Vishwanath
  • Daniel Buettner
  • Zhiling Lan
Article

Abstract

Current supercomputing centers usually deploy a large-scale compute system together with an associated data analysis or visualization system. Multiple scenarios have driven the demand that some associated jobs co-execute on different machines. We propose a multi-domain coscheduling mechanism, providing the ability to coordinate execution between jobs on multiple resource management domains without manual intervention. We have evaluated our mechanism based on real job traces from Intrepid and Eureka, the production Blue Gene/P system and a cluster with the largest GPU installation, deployed at Argonne National Laboratory. The experimental results show that coscheduling can be achieved with limited impact on system performance under varying workloads.

Keywords

Coscheduling Coupled system Heterogeneous computing Resource management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasi H, Wolf M, Eisenhauer G, Klasky S, Schwan K, Zheng F (2009) DataStager: Scalable data staging services for petascale applications. In: Proc of ACM international symposium on high performance distributed computing (HPDC) Google Scholar
  2. 2.
    Basney J, Livny M (1999) Improving goodput by co-scheduling CPU and network capacity. Int J High Perform Comput Appl 13(3):220–230 CrossRefGoogle Scholar
  3. 3.
    Binns J, Dech F, Papka M, Silverstein J, Stevens R (2005) Developing a distributed collaborative radiological visualization application. In: From Grid to HealthGrid, pp 70–79 Google Scholar
  4. 4.
    Blue Gene Team (2008) Overview of the IBM Blue Gene/P project. IBM J Res Devel Google Scholar
  5. 5.
  6. 6.
    Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S (1998) A resource management architecture for metacomputing systems. In: Proc of job scheduling strategies for parallel processing (JSSPP) Google Scholar
  7. 7.
    Etsion Y, Tsafrir D (2005) A short survey of commercial cluster batch schedulers. Technical Report 2005-13, the Hebrew University of Jerusalem Google Scholar
  8. 8.
    Frachtenberg E, Feitelson D, Petrini F, Fernandez J (2003) Flexible coscheduling–mitigating load imbalance and improving utilization of heterogeneous resources. In: Proc of IEEE international parallel & distributed processing symposium (IPDPS) Google Scholar
  9. 9.
    Foster I, Kesselman C, Lee C, Lindell R, Nahrstedt K, Roy A (1999) A distributed resource management architecture that supports advance reservations and co-allocation. In: Proc of international workshop on quality of service Google Scholar
  10. 10.
    Huedo E, Montero R, Llorente I (2004) A framework for adaptive execution in grids. Softw Pract Exp 34(7):631–651 CrossRefGoogle Scholar
  11. 11.
    MacLaren J (2007) HARC: the highly-available resource co-allocator. In: Proc. of GADA’07. LNCS, vol 4804. Springer, Berlin, pp 1385–1402 Google Scholar
  12. 12.
    Moab workload scheduler. http://www.adaptivecomputing.com
  13. 13.
    Ousterhout J (1982) Scheduling techniques for concurrent systems. In: Proc of IEEE int’l conference on distributed computing systems (ICDCS) Google Scholar
  14. 14.
    Petrini F, Feng W-C (2000) Buffered coscheduling: a new methodology for multitasking parallel jobs on distributed systems. In: Proc of IEEE int’l parallel & distributed processing symp (IPDPS) Google Scholar
  15. 15.
    Romosan A, Rotem D, Shoshani A, Wright D (2005) Co-scheduling of computation and data on computer clusters. In: Proc of int’l conf on scientific and statistical database management Google Scholar
  16. 16.
    Sobalvarro P, Pakin S, Weihl W, Chien A (1998) Dynamic coscheduling on workstation clusters. In: Proc of job scheduling strategies for parallel processing (JSSPP) Google Scholar
  17. 17.
    Sobalvarro P, Weihl W (1995) Demand-based coscheduling of parallel jobs on multiprogrammed multiprocessors. In: Proc of job scheduling strategies for parallel processing (JSSPP) Google Scholar
  18. 18.
    Smith W, Foster I, Taylor W (2000) Scheduling with advanced reservations. In: Proc of IEEE int’l parallel & distributed processing symposium (IPDPS) Google Scholar
  19. 19.
    Tang W, Lan Z, Desai N, Buettner D (2009) Fault-aware, utility-based job scheduling on Blue Gene/P systems. In: Proc of IEEE int’l conf on cluster computing Google Scholar
  20. 20.
    Tang W, Desai N, Buettner D, Lan Z (2010) Analyzing and adjusting user runtime estimates to improve job scheduling on the Blue Gene/P. In: Proceedings of IEEE international parallel & distributed processing symposium (IPDPS) Google Scholar
  21. 21.
    Tang W, Desai N, Vishwanath V, Buettner D, Lan Z (2011) Job coscheduling on coupled high-end computing system. In: Proc of int’l conf on parallel processing workshops (ICPPW) Google Scholar
  22. 22.
    Teodoro G, Sachetto R, Sertel O, Gurcan M, Meira W, Catalyurek U, Ferreira R (2009) Coordinating the use of GPU and CPU for improving performance of compute intensive applications. In: Proc of IEEE int’l conf on cluster computing Google Scholar
  23. 23.
    Townsley D, Bair R, Dubey A, Fisher R, Hearn N, Lamb D, Riley K (2009) Large-scale simulations of buoyancy-driven turbulent nuclear burning. J Phys, Conf Ser 125(1) Google Scholar
  24. 24.
    Tsafrir D, Etsion Y, Feitelson D (2007) Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans Parallel Distrib Syst 18(6):789–803 CrossRefGoogle Scholar
  25. 25.
    Vadiyar S, Dongarra J (2002) A metascheduler for the grid. In: Proc of 11th IEEE international symposium on high performance distributed computing (HPDC) Google Scholar
  26. 26.
    Vishwanath V, Hereld M, Morozov V, Papka ME (2011) Topology-aware data movement and staging for I/O acceleration on BlueGene/P supercomputing systems. In: Proc IEEE/ACM international conference for high performance computing, networking, storage and analysis (SC) Google Scholar
  27. 27.
    Vishwanath V, Hereld M, Papka ME (2011) Simulation-time data analysis and I/O acceleration on leadership-class systems using GLEAN. In: Proc of IEEE symposium on large data analysis and visualization Google Scholar
  28. 28.
    Wiseman Y, Feitelson D (2003) Paired gang scheduling. IEEE Trans Parallel Distrib Syst 14(6):581–592 CrossRefGoogle Scholar
  29. 29.
    Yoshimoto K, Kavatch PA, Andrews P (2005) Co-scheduling with user settable reservations. In: Proc of job scheduling strategies for parallel processing (JSSPP) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wei Tang
    • 1
  • Narayan Desai
    • 2
  • Venkatram Vishwanath
    • 2
  • Daniel Buettner
    • 2
  • Zhiling Lan
    • 1
  1. 1.Illinois Institute of TechnologyChicagoUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations