The Journal of Supercomputing

, Volume 57, Issue 1, pp 81–98 | Cite as

A multi-level scheduler for batch jobs on grids

  • Marco Pasquali
  • Ranieri BaragliaEmail author
  • Gabriele Capannini
  • Laura Ricci
  • Domenico Laforenza


This paper proposes a two-level scheduler for dynamically scheduling a continuous stream of sequential and multi-threaded batch jobs on grids, made up of interconnected clusters of heterogeneous single-processor and/or symmetric multiprocessor machines. The scheduler aims to schedule arriving jobs respecting their computational and deadline requirements, and optimizing the hardware and software resource usage. At the top of the hierarchy a lightweight meta-scheduler (MS) classifies incoming jobs according to their requirements, and schedules them among the underlying resources balancing the workload. At cluster level a Flexible Backfilling algorithm carries out the job machine associations by exploiting dynamic information about the environment. Scheduling decisions at both levels are based on job priorities computed by using different sets of heuristics. The different proposals have been compared through simulations. Performance figures show the feasibility of our approach.


Multi-criteria job scheduling Meta-scheduler Workload balancing Grid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El-Rewini H, Lewis TG, Ali HH (1994) Task scheduling in parallel and distributed systems. PTR Prentice Hall, New York Google Scholar
  2. 2.
    Hovestadt M, Keller A, Kao O, Streit A (2003) Scheduling in hpc resource management systems: queuing vs. planning. In: Feitelson DG, Rudolph L, Schwiegelshohn U (eds) Job scheduling strategies for parallel processing, 9th international workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Lecture notes in computer science, vol 2862. Springer, Berlin Google Scholar
  3. 3.
    Buyya R, Abramson D, Giddy J (2000) Economy driven resource management architecture for computational power grids. In: International conference on parallel and distributed processing techniques and applications (PDPTA2000) Google Scholar
  4. 4.
    Baraglia R, Dazzi P, Capannini G, Pagano G (2010) A multi-criteria job scheduling framework for large computing farms. In: Proceedings of IEEE CIT 2010, pp 187–194 Google Scholar
  5. 5.
    Feitelson DD, Rudolph L, Schwiegelshohn U (2005) Parallel job scheduling, a status report. In: Job scheduling strategies for parallel processing, 10th international workshop, JSSPP 2004, Revised selected papers, New York, NY, USA, June 13, 2004. Lecture notes in computer science, vol 3277. Springer, Berlin, pp 1–16 Google Scholar
  6. 6.
    Baraglia R, Capannini G, Pasquali M, Puppin D, Ricci L, Techiouba AD (2007) A two-level scheduler to dynamically schedule a stream of batch jobs in large-scale grids. In: Making grids work, proceedings of the CoreGRID workshop on programming models grid and P2P system architecture grid systems, tools and environments, 12–13 June 2007, Heraklion, Crete, Greece, pp 103–115 Google Scholar
  7. 7.
    KlusÃÄçek D, Rudovà H, Baraglia R, Pasquali M, Capannini G (2008) Comparison of multi-criteria scheduling techniques. In: Grid computing achievements and prospects. Springer, Berlin, pp 173–184 Google Scholar
  8. 8.
    Bolze R, Cappello F, Caron E, Daydé M, Desprez F, Jeannot E, Jégou Y, Lanteri S, Leduc J, Melab N, Mornet G, Namyst R, Primet P, Quetier B, Richard O, Talbi E-G, Irena T (2006) Grid’5000: a large scale and highly reconfigurable experimental grid testbed. Int J High Perform Comput Appl 20(4):481–494 CrossRefGoogle Scholar
  9. 9.
    Platform LSF reports user’s guide (2005). Web site, October
  10. 10.
    Berman F, Wolski R, Casanova H, Cirne W, Dail H, Faerman M, Figueira S, Hayes J, Obertelli G, Schopf J, Shao G, Smallen S, Spring N, Su A, Zagorodnov D (2003) Adaptive computing on the grid using AppLeS. IEEE Trans Parallel Distrib Syst 144:369–382 CrossRefGoogle Scholar
  11. 11.
    GENIAS Software GmbH (1995) Codine: Computing in distributed networked environments, 1995.
  12. 12.
    Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S (2002) Condor-g: a computation management agent for multi-institutional grids. Cluster Comput 5(3):237–246 CrossRefGoogle Scholar
  13. 13.
    Capit N, Costa GD, Georgiou Y, Huard G, Mouniãà G, Neyron P, Richard O, (2005) A batch scheduler with high level components. In: Proceedings of cluster computing and grid 2005 (CCGrid05), pp 776–783 CrossRefGoogle Scholar
  14. 14.
    Mohamed HH, Epema DHJ (2005) Experiences with the koala co-allocating scheduler in multiclusters. In: Proceedings of CCGRID ’05, Washington, DC, USA. IEEE Computer Society, Los Alamitos, pp 784–791 Google Scholar
  15. 15.
    VIOLA—Vertically Integrated Optical Testbed for Large Application in DFN, website (2005). Online:
  16. 16.
    Vadhiyar SS, Dongarra JJ (2002) A meta-scheduler for the grid. In: Proceedings of the 11th IEEE international symposium on high performance distributed computing (HPDC’02), Edinburgh, July 2002. IEEE Computer Society, Los Alamitos, pp 343–351 CrossRefGoogle Scholar
  17. 17.
    Huedo E, Montero RS, Llorente IM (2005) The GridWay framework for adaptive scheduling and execution on grids. Scalable Comput, Pract Exp 6(3):1–8 Google Scholar
  18. 18.
    Berman F, Chien A, Cooper K, Dongarra J, Foster I, Gannon D, Johnsson L, Kennedy K, Kesselman C, Mellor-Crummey J, Reed D, Torczon L, Wolski R (2001) The GrADS project: software support for high-level grid application development. Int J High Perform Appl Supercomp 15(4):327–344 CrossRefGoogle Scholar
  19. 19.
    Allen G, Davis K, Dolkas KN, Doulamis ND, Goodale T, Kielmann T, Merzky A, Nabrzyski J, Pukacki J, Radke T, Russell M, Shalf J, Taylor I (2003) Enabling applications on the grid: a GridLab overview. Int J High Perform Comput Appl 17:449–466 2003 CrossRefGoogle Scholar
  20. 20.
    Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-purpose distributed computing systems. IEEE Trans Softw Eng 14(2):141–154 CrossRefGoogle Scholar
  21. 21.
    Fiat A, Woeginger GJ (1998) Online algorithms, the state of the art. In: Lecture notes in computer science, vol 1442. Springer, London Google Scholar
  22. 22.
    Mu’alem AW, Feitelson DG (2001) Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans Parallel Distrib Syst 12(6):529–543 CrossRefGoogle Scholar
  23. 23.
    Schwiegelshohn U, Yahyapour R (1998) Analysis of first-come first-serve parallel job scheduling. In: SODA ’98, Philadelphia, PA, USA, pp 629–638 Google Scholar
  24. 24.
    Dazzi P, Nidito F, Pasquali M (2007) New perspectives in autonomic design patterns for stream-classification-systems. In: Proceedings of the 2007 workshop on automating service quality (WRASQ ’07), New York, NY, USA, pp 34–37 CrossRefGoogle Scholar
  25. 25.
    The Globus Toolkit (2011)
  26. 26.
    Uniform Interface to Computing Resources (2011)
  27. 27.
  28. 28.
    Noël S, Delannoy O, Emad N, Manneback P, Petiton SG (2006) A multi-level scheduler for the grid computing YML framework. In: Proceedings of Euro-par workshops, pp 87–100 Google Scholar
  29. 29.
    Abramson D, Buyya R, Giddy J (2002) A computational economy for grid computing and its implementation in the Nimrod-G resource broker. Future Gen Comput Syst 18(8):1061–1074 zbMATHCrossRefGoogle Scholar
  30. 30.
    Borissov N, Anandasivam A, Wirström N, Neumann D (2008) Rational bidding using reinforcement learning. In: Proceedings of the 5th international workshop on grid economics and business models, GECON ’08, Las Palmas de Gran Canaria, Spain, pp 73–88 Google Scholar
  31. 31.
    SORMA—Self-Organizing ICT Resource Management (2008) European Union’s Information Society Technologies Programme.
  32. 32.
    Capannini G, Baraglia R, Puppin D, Ricci L, Pasquali M (2007) A job scheduling framework for large computing farms. In: Proceedings of SC07, Reno, USA Google Scholar
  33. 33.
    Pasquali M, Baraglia R, Capannini G, Ricci L, Laforenza D (2008) A two-level scheduler to dynamically schedule a stream of batch jobs in large-scale grids. In: Proceedings of international conference on high performance distributed computing (HPDC 2008), pp 231–232 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marco Pasquali
    • 1
  • Ranieri Baraglia
    • 1
    Email author
  • Gabriele Capannini
    • 1
  • Laura Ricci
    • 2
  • Domenico Laforenza
    • 3
  1. 1.Information Science and Technologies InstituteItalian National Research CouncilPisaItaly
  2. 2.Department of Computer ScienceUniversity of PisaPisaItaly
  3. 3.Institute of Informatics and TelematicsItalian National Research CouncilPisaItaly

Personalised recommendations