The Journal of Supercomputing

, Volume 55, Issue 2, pp 246–268 | Cite as

Pool-based anonymous communication framework for high-performance computing

  • Minh-Triet Tran
  • Thanh-Trung Nguyen
  • Anh-Duc Duong
  • Isao Echizen


We propose and analyze in details the revised model of XPROB, an infinite family of pool-based anonymous communication systems that can be used in various applications including high performance computing environments. XPROB overcomes the limitations of APROB Channel that only resists a global delaying adversary (GDA). Each instance of XPROB uses a pool mix as its core component to provide resistance against a global active adversary (GAA), a stronger yet more practical opponent than a GDA. For XPROB, a GAA can drop messages from users but cannot break the anonymity of the senders of messages. Analysis and experimental evaluations show that each instance of XPROB provides greater anonymity than APROB Channel for the same traffic load and user behaviors (rate and number of messages sent). In XPROB, any message can be delivered with high probability within a few rounds after its arrival into the system; thus, an opponent cannot be certain when a message will be delivered. Furthermore, users can choose their own preference balance between anonymity and delay. Through the evaluation, we prove that XPROB can provide anonymity for users in high-performance computing environments.


Anonymity system XPROB Pool-based anonymous communication framework Probabilistic real-time Global active adversary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kesdogan D, Egner J, Büschkes R (1998) Stop-and-go mixes: providing probabilistic anonymity in an open system. In: Information hiding (IH, 1998). LNCS, vol 1525. Springer, Berlin, pp 83–98 CrossRefGoogle Scholar
  2. 2.
    Jerichow A, Müuller J, Pfizmann A, Pfitzmann B, Waidner M (1998) Real-time mixes: a bandwidth-efficient anonymity protocol. IEEE J Sel Areas Commun 16(4):495–509 CrossRefGoogle Scholar
  3. 3.
    Danezis G (2002) Forward secure mixes. In: 7th Nordic workshop on secure IT systems, pp 195–207 Google Scholar
  4. 4.
    Diaz C, Preneel B (2004) Reasoning about the anonymity provided by pool mixes that generate dummy traffic. In: Information hiding (IH, 2004). LNCS, vol 3200. Springer, Berlin, pp 309–325 CrossRefGoogle Scholar
  5. 5.
    Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation onion router. In: 13th USENIX security symposium, USENIX Association, pp 303–320 Google Scholar
  6. 6.
    Syverson P, Tsudik G, Reed M, Landwehr C (2009) Towards an analysis of onion routing security. In: Designing privacy enhancing technologies. LNCS, vol 2009. Springer, Berlin, pp 96–114 CrossRefGoogle Scholar
  7. 7.
    Moeller U, Cottrell L, Palfrader P, Sassaman L (2002) Mixmaster protocol Google Scholar
  8. 8.
    Tóth G, Hornák Z (2006) The APROB channel: adaptive semi-real-time anonymous communication. In: Security and privacy in dynamic environments, IFIP. International federation for information processing, vol 201. Springer, Boston, pp 483–492 CrossRefGoogle Scholar
  9. 9.
    Tran MT, Nguyen TT, Echizen I (2008) Pool-based APROB channel to provide resistance against global active adversary under probabilistic real-time condition. In: 2008 IEEE/IFIP international symposium on trust, security and privacy for pervasive applications (TSP-08). IEEE Computer Society, Los Alamitos, pp 257–263 Google Scholar
  10. 10.
    Tran MT, Duong AD, Echizen I (2009) XPROB—a generalized pool-based anonymous communication framework. In: The fifth international conference on intelligent information hiding and multimedia signal processing (IIHMSP2009). IEEE Computer Society, Los Alamitos, pp 52–55 CrossRefGoogle Scholar
  11. 11.
    Chaum D (1981) Untraceable electronic mail, return addresses, and digital pseudonyms. Commun ACM 4(2):84–88 CrossRefGoogle Scholar
  12. 12.
    Gülcü C, Tsudik G (1996) Mixing e-mail with Babel. In: Proceedings of the network and distributed security symposium (NDSS ’96). IEEE Computer Society, New York, pp 2–16 CrossRefGoogle Scholar
  13. 13.
    Danezis G, Dingledine R, Mathewson N (2003) Mixminion: design of a type III anonymous remailer protocol. In: Proceedings of the 2003 IEEE symposium on security and privacy. IEEE Computer Society, Los Alamitos, pp 2–15 Google Scholar
  14. 14.
    Diaz C, Serjantov A (2003) Generalising mixes. In: Privacy enhancing technologies (PET, 2003). LNCS, vol 2760. Springer, Berlin, pp 18–31 CrossRefGoogle Scholar
  15. 15.
    Tóth G, Hornák Z (2004) Measuring anonymity in a non-adaptive real-time system. In: Privacy enhancing technologies (PET, 2004). LNCS, vol 3424. Springer, Berlin, pp 226–241 CrossRefGoogle Scholar
  16. 16.
    Serjantov A (2007) A fresh look at the generalised mix framework. In: Privacy enhancing technologies (PET, 2007). LNCS, vol 4776. Springer, Berlin, pp 17–29 CrossRefGoogle Scholar
  17. 17.
    Serjantov A, Dingledine R, Syverson P (2002) From a trickle to a flood: active attacks on several mix types. In: Information hiding (IH, 2002). LNCS, vol 2578. Springer, Berlin, pp 36–52 CrossRefGoogle Scholar
  18. 18.
    Diaz C (2004) Anonymity and privacy in electronic services. PhD thesis, KU Leuven Google Scholar
  19. 19.
    Serjantov A, Danezis G (2002) Towards an information theoretic metric for anonymity. In: Privacy enhancing technologies (PET, 2002). LNCS, vol 2482. Springer, Berlin, pp 259–263 Google Scholar
  20. 20.
    Diaz C, Seys S, Claessens J, Preneel B (2002) Towards measuring anonymity. In: Privacy enhancing technologies (PET, 2002). LNCS, vol 2482. Springer, Berlin, pp 184–188 Google Scholar
  21. 21.
    Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715 zbMATHMathSciNetGoogle Scholar
  22. 22.
    Serjantov A (2004) On the anonymity of anonymity systems. PhD thesis, University of Cambridge Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Minh-Triet Tran
    • 1
  • Thanh-Trung Nguyen
    • 1
  • Anh-Duc Duong
    • 1
  • Isao Echizen
    • 2
  1. 1.University of Science, VNU-HCMHo Chi Minh CityVietnam
  2. 2.National Institute of InformaticsChiyoda-ku, TokyoJapan

Personalised recommendations