The Journal of Supercomputing

, Volume 54, Issue 2, pp 239–251 | Cite as

Mutually independent Hamiltonian cycles in dual-cubes

  • Yuan-Kang Shih
  • Hui-Chun Chuang
  • Shin-Shin KaoEmail author
  • Jimmy J. M. Tan


The hypercube family Q n is one of the most well-known interconnection networks in parallel computers. With Q n , dual-cube networks, denoted by DC n , was introduced and shown to be a (n+1)-regular, vertex symmetric graph with some fault-tolerant Hamiltonian properties. In addition, DC n ’s are shown to be superior to Q n ’s in many aspects. In this article, we will prove that the n-dimensional dual-cube DC n contains n+1 mutually independent Hamiltonian cycles for n≥2. More specifically, let v i V(DC n ) for 0≤i≤|V(DC n )|−1 and let \(\langle v_{0},v_{1},\ldots ,v_{|V(\mathit{DC}_{n})|-1},v_{0}\rangle\) be a Hamiltonian cycle of DC n . We prove that DC n contains n+1 Hamiltonian cycles of the form \(\langle v_{0},v_{1}^{k},\ldots,v_{|V(\mathit{DC}_{n})|-1}^{k},v_{0}\rangle\) for 0≤kn, in which v i k v i k whenever kk′. The result is optimal since each vertex of DC n has only n+1 neighbors.


Hypercube Dual-cube Hamiltonian cycle Hamiltonian connected Mutually independent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arabnia HR (1993) A transputer-based reconfigurable parallel system. In: Atkins S, Wagner AS (eds) Transputer research and applications (NATUG 6), Vancouver, Canada. IOS Press, Amsterdam, pp 153–169 Google Scholar
  2. 2.
    Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor theoretical properties and algorithms. Parallel Comput 21(11):1783–1806 CrossRefGoogle Scholar
  3. 3.
    Bondy JA, Murty USR (1980) Graph theory with applications. North-Holland, New York Google Scholar
  4. 4.
    Caha R, Koubek V (2007) Spanning multi-paths in hypercubes. Discrete Math 307:2053–2066 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chang C-H, Lin C-K, Huang H-M, Hsu L-H (2004) The super laceability of the hypercubes. Inf Process Lett 92:15–21 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen S-Y, Kao S-S (2008) The edge-pancyclicity of dual-cube extensive networks. In: 2nd WSEAS international conference on computer engineering and applications (CEA’08), Acapulco, Mexico, Jan 2008, pp 233–236 Google Scholar
  7. 7.
    Fink J (2007) Perfect matchings extend to Hamilton cycles in hypercubes. J Comb Theory, B 97:1074–1076 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Harary F, Hayes JP, Wu H-J (1988) A survey of the theory of the hypercube graphs. Comput Math Appl 15:277–289 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hsieh S-Y, Weng Y-F (2009) Fault-tolerant embedding of pairwise independent Hamiltonian paths on a faulty hypercube with edge faults. Theory Comput Syst 45:407–425 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hsieh S-Y, Yu P-Y (2007) Fault-free mutually independent Hamiltonian cycles in hypercubes with faulty edges. J Comb Optim 13:153–162 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jiang Z, Wu J (2006) A limited-global information model for fault-tolerant routing in dual-cube. Int J Parallel, Emergent Distrib Syst 21:61–77 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kobeissi M, Mollard M (2004) Disjoint cycles and spanning graphs of hypercubes. Discrete Math 288:73–87 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lai C-J, Tsai C-H (2008) On embedding cycles into faulty dual-cubes. Inf Process Lett 109:147–150 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Leighton FT (1992) Introduction to parallel algorithms and architecture: arrays, trees, hypercubes. Morgan Kaufmann, San Mateo zbMATHGoogle Scholar
  15. 15.
    Li Y, Peng S (2000) Dual-cubes: a new interconnection network for high-performance computer clusters. In: Proceedings of the 2000 international computer symposium, workshop on computer architecture, ChiaYi, Taiwan, Dec 2000, pp 51–57 Google Scholar
  16. 16.
    Li Y, Peng S (2001) Fault-tolerant routing and disjoint paths in dual-cube: a new interconnection network. In: International conference on parallel and distributed systems (ICPADS 2001), Kyongju, Korea, Jun 2001, pp 315–322 Google Scholar
  17. 17.
    Li Y, Peng S, Chu W (2002) Hamiltonian cycle embedding for fault tolerance in dual-cube. In: IASTED international conference on networks, parallel and distributed processing and applications, Tsukuba, Japan, Oct 2002, pp 1–6 Google Scholar
  18. 18.
    Li Y, Peng S, Chu W (2004) Efficient collective communications in dual-cube. J Supercomput 28:71–90 zbMATHCrossRefGoogle Scholar
  19. 19.
    Li Y, Peng S, Chu W (2004) Binomial-tree fault tolerant routing in dual-cubes with large number of faulty nodes. In: International symposium on computational and information sciences (CIS’04), Shanghai, China, Dec 2004, pp 51–56 Google Scholar
  20. 20.
    Li Y, Peng S, Chu W (2005) Fault-tolerant cycle embedding in dual-cube with node faults. Int J High Perform Comput Netw 3:45–53 CrossRefGoogle Scholar
  21. 21.
    Li T-K, Tsai C-H, Tan JJM, Hsu L-H (2003) Bipanconnectivity and edge-fault-tolerant bipancyclic of hypercubes. Inf Process Lett 21:107–110 CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lin C-K, Huang H-M, Hsu L-H, Bau S (2005) Mutually Hamiltonian paths in star networks. Networks 46:110–117 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lin C-K, Huang H-M, Tan JJM, Hsu L-H (2009) The mutually Hamiltonian cycles of the pancake networks and the star networks. Discrete Math (accepted) Google Scholar
  24. 24.
    Lin C-K, Shih Y-K, Tan JJM, Hsu L-H (2009) Mutually independent Hamiltonian cycles in some graphs. Ars Comb (accepted) Google Scholar
  25. 25.
    Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37:867–872 CrossRefGoogle Scholar
  26. 26.
    Shih Y-K, Lin C-K, Frank Hsu D, Tan JJM, Hsu L-H (2009) The construction of MIH cycles in bubble-sort graphs. Int J Comput Math (accepted) Google Scholar
  27. 27.
    Simmons G (1978) Almost all n-dimensional rectangular lattices are Hamilton laceable. Congr Numer 21:103–108 MathSciNetGoogle Scholar
  28. 28.
    Sun C-M, Lin C-K, Huang H-M, Hsu L-H (2006) Mutually independent Hamiltonian paths and cycles in hypercubes. J Interconnect Netw 7:235–255 CrossRefGoogle Scholar
  29. 29.
    Tsai C-H (2004) Linear array and rring embeddings in conditional faulty hypercubes. Theor Comput Sci 314:431–443 zbMATHCrossRefGoogle Scholar
  30. 30.
    Tsai C-H (2007) Cycles embedding in hypercubes with node failures. Inf Process Lett 102:242–246 zbMATHCrossRefGoogle Scholar
  31. 31.
    Tsai C-H, Jiang S-Y (2007) Path bipancyclicity of hypercubes. Inf Process Lett 101:93–97 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Arif Wani M, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multi-ring network. J Supercomput 25(1):43–63 zbMATHCrossRefGoogle Scholar
  33. 33.
    Xu J-M, Du Z-Z, Xu M (2005) Edge-fault-tolerant edge-bipancyclicity of hypercubes. Inf Process Lett 96:146–150 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yuan-Kang Shih
    • 1
  • Hui-Chun Chuang
    • 2
  • Shin-Shin Kao
    • 2
    Email author
  • Jimmy J. M. Tan
    • 1
  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchuTaiwan, China
  2. 2.Department of Applied MathematicsChung-Yuan Christian UniversityChung-LiTaiwan, China

Personalised recommendations