The Journal of Supercomputing

, Volume 52, Issue 1, pp 23–46 | Cite as

Connectivity and coverage maintenance in wireless sensor networks

  • Yuanyuan Zeng
  • Cormac J. Sreenan
  • Naixue Xiong
  • Laurence T. Yang
  • Jong Hyuk ParkEmail author


One of the main design challenges for wireless sensor networks (WSNs) is to obtain long system lifetime without sacrificing system original performance such as communication connectivity and sensing coverage. A large number of sensor nodes are deployed in redundant fashion in dense sensor networks, which lead to higher energy consumption. We propose a distributed framework for energy efficient connectivity and coverage maintenance in WSNs. In our framework, each sensor makes self-scheduling to separately control the states of RF and sensing unit based on dynamic coordinated reconstruction mechanism. A novel energy-balanced distributed connected dominating set algorithm is presented to make connectivity maintenance; and also a distributed node sensing scheduling is brought forward to maintain the network coverage according to the surveillance requirements. We implemented our framework by C++ programming, and the simulation results show that our framework outperforms several related work by considerably improving the energy performance of sensor networks to effectively extend network lifetime.


Wireless sensor networks Energy efficient Connectivity Coverage Connected dominating set Self-scheduling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya T, Roy R (2005) Distributed algorithm for power aware minimum connected dominating set for routing in wireless ad hoc networks. In: ICPP workshops, 2005, pp 387–394 Google Scholar
  2. 2.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114 CrossRefGoogle Scholar
  3. 3.
    Alzoubi KM, Wan PJ, Frieder O (2002) Distributed heuristics for connected dominating sets in wireless ad hoc networks. J Commun Netw 4(1):1–8 Google Scholar
  4. 4.
    Bai X, Xuan D, Yun Z, Lai TH, Jia W (2008) Complete optimal deployment patterns for full-coverage and k-connectivity (k≤6) wireless sensor networks. In: MobiHoc’08, May 2008 Google Scholar
  5. 5.
    Bai X, Yun Z, Xuan D, Lai TH, Jia W (2008) Deploying four-connectivity and full-coverage wireless sensor networks. In: IEEE INFOCOM, 2008 Google Scholar
  6. 6.
    Butenko S, Cheng X, Oliveira CAS, Pardalos PM (2004) A new heuristic for the minimum connected dominating set problem on ad hoc wireless networks. In: Cooperative control and optimization, 2004, pp 61–73 Google Scholar
  7. 7.
    Chen B, Jamieson K, Balakrishnan H, Morris R (2001) Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. In: MobiCom, 2001, pp 85–96 Google Scholar
  8. 8.
    Clark BN, Colbourn CJ, Johnson DS (1990) Unit disk graphs. Discrete Math 86:165–177 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hsin C, Liu M (2004) Network coverage using low duty-cycled sensors: random & coordinated sleep algorithm. In: The 3rd international symposium on information processing in sensor networks, Berkeley, CA, April 2004 Google Scholar
  10. 10.
    Lazos L, Poovendran R, Ritcey JA (2007) Probabilistic detection of mobile targets in heterogeneous sensor networks. In: IPSN, April 2007 Google Scholar
  11. 11.
    Li H, Miao H, Liu L, Li L, Zhang H (2008) Energy conservation in wireless sensor networks and connectivity and connectivity of graphs. Theor Comput Sci 393:81–89 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lu J, Bao L, Suda T (2005) Probabilistic self-scheduling for coverage configuration in sensor networks. In: The international conference on sensing technology (ICST), Palmerston North, New Zealand, Nov. 2005 Google Scholar
  13. 13.
    Min M, Huang CX, Huang SC-H, Wu W, Du H, Jia X (2004) Improving construction for connected dominating set with Steiner tree in wireless sensor networks. In: Global optimization, 2004 Google Scholar
  14. 14.
    Pottie GJ, Kaiser WJ (2000) Wireless integrated network sensors. Commun ACM 43(5):51–58 CrossRefGoogle Scholar
  15. 15.
    Rozell CJ, Johnson DH (2007) Power scheduling for wireless sensor and actuator networks. In: IPSN, April 2007 Google Scholar
  16. 16.
    Sivakumar R, Das B, Bharghavan V (1998) Spine-based routing in ad hoc networks. ACM/Baltzer Cluster Comput J 1:237–249 CrossRefGoogle Scholar
  17. 17.
    Stojmenovic I, Seddigh M, Zunic J (2002) Dominating sets and neighbor elimination based broadcasting algorithms in wireless networks. IEEE Int Conf System Sci 13(1):14–15 Google Scholar
  18. 18.
    Tian D, Georganas ND (2002) A coverage-preserving node scheduling scheme for large wireless sensor networks. In: WSNA, 2002 Google Scholar
  19. 19.
    Wan PJ, Alzoubi K, Frieder O (2002) Distributed well connected dominating set in wireless ad hoc networks. In: IEEE INFOCOM, 2002 Google Scholar
  20. 20.
    Wang XR, Xing GL, Zhang YF, Lu CY, Pless R, Gill C (2003) Integrated coverage and connectivity and configuration in wireless sensor networks. In: ACM SenSys, 2003, pp 28–39 Google Scholar
  21. 21.
    Wattenhofer R, Li L, Bahl P, Wang Y (2001) Distributed topology control for power efficient operation in multihop wireless ad hoc networks. In: IEEE InfoCom, 2001 Google Scholar
  22. 22.
    Woehrle M, Brockhoff D, Hohm T, Bleuler S (2008) Investigating coverage and connectivity trade-offs in wireless sensor networks. TIK-report No. 294, Oct. 2008 Google Scholar
  23. 23.
    Wu J, Dai F, Gao M, Stojmenovic I (2001) On calculating power-aware connected dominating sets for efficient routing in ad hoc wireless networks. In: IEEE/KICS J Commun Netw, pp 346–356 Google Scholar
  24. 24.
    Wu J, Li H (1999) On calculating connected dominating set for efficient routing in ad hoc wireless networks. In: The 3rd ACM int’l workshop on discrete algorithms and methods for mobile computing and communications, 1999, pp 7–14 Google Scholar
  25. 25.
    Xu Y, Bien S, Mori Y, Heidemann J, Estrin D (2003) Topology control protocols to conserve energy in wireless ad hoc networks. Technical report 6, University of California, Los Angeles Google Scholar
  26. 26.
    Xu Y, Heidemann J, Estrin D (2001) Geography-informed energy conservation for ad hoc routing. In: MobiCom, Rome, Italy, July 2001, pp 70–84 Google Scholar
  27. 27.
    Yan T, He T, Stankovic JA (2002) Differentiated surveillance for sensor networks. In: ACM workshop on wireless sensor networks and applications, Atlanta, GA, October 2002 Google Scholar
  28. 28.
    Ye F, Zhong G, Cheng J, Lu S, Zhang L (2002) PEAS: A robust energy conserving protocol for long-lived sensor networks. In: The 10th IEEE international conference on network protocols, Paris, France, November 2002 Google Scholar
  29. 29.
    Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330 CrossRefGoogle Scholar
  30. 30.
    Zou Y, Chakrabarty K (2005) A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Trans Comput 54(8):978–991 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yuanyuan Zeng
    • 1
    • 2
  • Cormac J. Sreenan
    • 2
  • Naixue Xiong
    • 3
  • Laurence T. Yang
    • 4
  • Jong Hyuk Park
    • 5
    Email author
  1. 1.School of Electronic EngineeringWuhan UniversityWuhanChina
  2. 2.Department of Computer ScienceUniversity College CorkCorkIreland
  3. 3.Department of Computer ScienceGeorgia State UniversityAtlantaUSA
  4. 4.Department of Computer ScienceSt. Francis Xavier UniversityAntigonishCanada
  5. 5.Department of Computer Science and EngineeringKyungnam UniversityKyungnamKorea

Personalised recommendations