The systems edge of the Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) optical bus parallel computing model

  • Brian J. d’Auriol


This paper is about exploring the various systems related aspects pertinent in the recent Parameterized Linear Array with a Reconfigurable Pipelined Bus System (LARPBS(p)) model. The two principal features of the LARPBS(p) model is, firstly, its bridging model definition similar to that of the BSP model leading to a more detailed algorithm cost analysis than other models, and secondly, the incorporation of several new communication primitives not defined in earlier models. This paper reviews the systems related aspects of earlier optical bus models and summarizes the LARPBS(p) model. The main part of this paper considers some practical systems related aspects of the LARPBS(p) model, specifically: fiber and free space based implementations, feasibility study, communication traffic analysis, bus collision avoidance, and the cost analysis of a MIMD algorithm. An overview perspective of the work is presented, thereby: the edge of systems related research is identified.


Optical bus Parallel computing model 


  1. 1.
    Ai J, Li Y (1999) Polymer fiber image guide optical circuits that incorporate free-space addrop components. Appl Opt 38(29):6167–6175 CrossRefGoogle Scholar
  2. 2.
    Akl SG (1997) Parallel computation models and methods. Prentice-Hall, Englewood Cliffs Google Scholar
  3. 3.
    Banerjee SR, Drayton RF (2006) 50-GHz integrated interconnects in silicon optical microbench technology. IEEE Trans Adv Packag 29(2):307–313 CrossRefGoogle Scholar
  4. 4.
    Briskin G, Clements M, Cutts D, Kakaz K, Mattingly S, Watts G, Zeller R (2000) Design and performance of the dzero data acquisition system. In: Nuclear science symposium conference record, vol 3, Lyon, October 2000. IEEE, pp 26/31–26/33 Google Scholar
  5. 5.
    Chiarulli D, Levitan S, Melhem R, Bidnurkar M, Ditmore R, Gravenstreter G, Guo Z, Qiao C, Sakr M, Teza J (1994) Optoelectronic buses for high-performance computing. Proc IEEE 92(11):1701–1709 CrossRefGoogle Scholar
  6. 6.
    Chiarulli DM, Ditmore RM, Levitan SP, Melhem RG (1991) An all optical addressing circuit: experimental results and scalability analysis. J Lightwave Technol 9(12):1717–1725 CrossRefGoogle Scholar
  7. 7.
    Chiarulli DM, Melhem RG, Levitan SP (1987) Using coincident optical pulses for parallel memory addressing. IEEE Comput 20(12):48–58 Google Scholar
  8. 8.
    Cok RS (1991) Parallel programs for the transputer. Prentice-Hall, Englewood Cliffs Google Scholar
  9. 9.
    d’Auriol BJ (2000) Communication in the LARPBS (optical bus) model: A case study. In: Goscinski A, et al. (ed) Proc of the fourth international conference on algorithms and architecture for parallel processing (ICA3PP2000), Hong Kong, December 2000, pp 581–590 Google Scholar
  10. 10.
    d’Auriol BJ, Beltran M (2004) Optical bus communication modeling and simulation. In: Rasit Eskicioglu M (ed) Proc of the international symposium on high performance computing systems and applications (HPCS 2004), Winnipeg, Manitoba, Canada, May 2004, pp 135–142 Google Scholar
  11. 11.
    d’Auriol BJ, Beltran M (2006) A historical analysis of fiber based optical bus parallel computing models. Scalable Comput Pract Exp (SCPE) 7(1):115–125 Google Scholar
  12. 12.
    d’Auriol BJ, Draper LS (2005) A free space optical bus parallel model framework. In: Arabnia HR (ed) Proceedings of the 2005 international conference on parallel and distributed processing techniques and applications (PDPTA’05), vol II, Las Vegas, NV, USA, June 2005. CSREA Press, pp 591–597 Google Scholar
  13. 13.
    d’Auriol BJ, Draper LS, Roldán JR (2005) Assessing parameters for the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)). Manuscript submitted Google Scholar
  14. 14.
    d’Auriol BJ, Ghosh T (2006) A systems model for computation, communication, command and control (C4) in a spacecraft or satellite cluster. In: Proceedings of the international conference on parallel and distributed computing, applications and technologies (PDCAT), Taipei, Taiwan, December 2006. IEEE Computer Society, pp 285–290 Google Scholar
  15. 15.
    d’Auriol BJ, Molakaseema R (2005) A parameterized linear array with a reconfigurable pipelined bus system: LARPBS(p). Comput J 48(1):115–125 CrossRefGoogle Scholar
  16. 16.
    d’Auriol BJ, Roldán JR (2005) An optical power budget model for the parameterized linear array with a reconfigurable pipelined bus system (LARPBS(p)) model), 2005. Manuscript submitted Google Scholar
  17. 17.
    Dickinson A, Prise ME (1989) An integrated free space optical bus. In: Proceedings of the IEEE international conference on computer design: VLSI in computers and processors (ICCD’89), Cambridge, MA, USA, October 1989, pp 62–65 Google Scholar
  18. 18.
    ElGindy H (1998) An improved sorting algorithm for linear arrays with optical buses (extended abstract). (Manuscript), April 1998 Google Scholar
  19. 19.
    Megson GM (1992) An introduction to systolic algorithm design. Oxford University Press, New York zbMATHGoogle Scholar
  20. 20.
    Graziano MG, Masera G, Piccinini G, Zamboni M (2001) Speed and behaviour improvement for semidynamic flip-flop logic family. In: Proceedings of ESSCIRC 2001, Villach, Austria, September 2001 Google Scholar
  21. 21.
    Gropp W, Lusk E, Skjellum A (1999) Using MPI, portable parallel programming with the message-passing interface. The MIT Press, Cumberland Google Scholar
  22. 22.
    Guo Z (1992) Sorting on array processors with pipelined buses. In: Proceedings of the 1992 international conference on parallel processing, vol 3, 1992, pp 80–292 Google Scholar
  23. 23.
    Guo Z, Melhem RG, Hall RW, Chiarulli DM, Levitan SP (1990) Array processors with pipelined optical busses. In: Jaja J (ed) Proc 3rd symposium on frontiers of massively parallel computation (Cat. No. 90CH2908-2), College Park, MD, USA, October 1990, pp 333–342 Google Scholar
  24. 24.
    Hamanaka K (1991) Optical bus interconnection system using selfoc lenses. Opt Lett 16(16):1222–1224 CrossRefGoogle Scholar
  25. 25.
    Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Krackhardt U, Sauer F, Stork W, Streibl N (1992) Concept for an optical bus-type interconnection network. Appl Opt 31(11):1730–1734 CrossRefGoogle Scholar
  27. 27.
    Levitan SP, Chiarulli DM, Melhem RG (1990) Coincident pulse techniques for multiprocessor interconnection structures. Appl Opt 29(4):2024–2033 CrossRefGoogle Scholar
  28. 28.
    Li K (1997) Constant time boolean matrix multiplication on a linear array with a reconfigurable pipelined bus system. J Supercomp 11(4):391–403 CrossRefGoogle Scholar
  29. 29.
    Li Y, Lohmann AW, Rao SB (1993) Free-space optical mesh-connected bus networks using wavelength-division multiple access. Appl Opt 32(32):6425–6437 CrossRefGoogle Scholar
  30. 30.
    Li Y, Pan Y, Zheng SQ (1997) A pipelined TDM optical bus with conditional delays. In: Goodman J, Hinton S, Pinkston T, Schenfeld E (eds) Proceedings of the fourth international conference on massively parallel processing using optical interconnections, Montreal, Canada, June 1997, pp 196–201 Google Scholar
  31. 31.
    Melhem RG, Chiarulli DM, Levitan SP (1989) Space multiplexing of waveguides in optically interconnected multiprocessor systems. Comput J 32(4):362–369 CrossRefGoogle Scholar
  32. 32.
    Pan Y (1994) Order statistics on optically interconnected multiprocessor systems. Opt Laser Technol 26(4):281–287 CrossRefGoogle Scholar
  33. 33.
    Pan Y (1998) Basic data movement operations on the LARPBS model. In: Li K, Pan Y, Zheng S-Q (eds) Parallel computing using optical interconnections. Kluwer Academic, Dordrecht, pp 227–247 CrossRefGoogle Scholar
  34. 34.
    Pan Y (2003) Computing on the restricted LARPBS model. In: Proc of the 2003 international symposium on parallel and distributed processing and applications, Aizu-Wakamatsu City, Japan, July 2003. Lecture notes in computer science, vol 2745. Springer, Berlin, pp 9–13 Google Scholar
  35. 35.
    Pan Y, Li K (1996) Linear array with a reconfigurable pipelined bus system—concepts and applications. In: Arabnia HR (ed) Proc of the international conference on parallel and distributed processing techniques and applications (PDPTA’96), vol III, Sunnyvale, California, USA, August 1996, pp 1431–1441 Google Scholar
  36. 36.
    Pavel S, Akl SG (1995) On the power of arrays with reconfigurable optical buses. Technical Report No. 95-374, Queens University, Kingston, Ontario, Canada, February 1995 Google Scholar
  37. 37.
    Qiao C (1995) Efficient matrix operations in a reconfigurable array with spanning optical buses. In: Proceedings frontiers ’95. The fifth symposium on the frontiers of massively parallel computation (Cat. No. 95TH8024), 1994, McLean, VA, USA, Feb 1995. IEEE Comput. Soc. Press, pp 273–280 Google Scholar
  38. 38.
    Qiao C, Melhem RG (1993) Time-division optical communications in multiprocessor arrays. IEEE Trans Comput 42(5):577–590 CrossRefGoogle Scholar
  39. 39.
    Roldan R, d’Auriol BJ (2003) A preliminary feasibility study of the LARPBS optical bus parallel model. In: Senechal D (ed) Proceedings of the 17th international symposium on high performance computing systems and applications (HPCS 2003) and OSCAR symposium, Sherbrooke, Quebec, Canada, May 2003, pp 181–188 Google Scholar
  40. 40.
    Sahni S (2001) Models and algorithms for optical and optoelectronic parallel computers. Int J Found Comput Sci 12(3):249–264 CrossRefGoogle Scholar
  41. 41.
    Sahni S (1999) Models and algorithms for optical and optoelectronic parallel computer. In: Proc of 1999 international symposium on parallel architecture, algorithms and networks (I-SPAN’99), June 1999, pp 2–7 Google Scholar
  42. 42.
    Skillicorn DB, Talia D (1998) Models and languages for parallel computation. ACM Comput Surveys 30(2):123–169 CrossRefGoogle Scholar
  43. 43.
    Trahan JL, Bourgeois AG, Vaidyanathan R (1998) Tighter and broader complexity results for reconfigurable models. Parallel Process Lett 8(3):271–282 CrossRefMathSciNetGoogle Scholar
  44. 44.
    Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111 CrossRefGoogle Scholar
  45. 45.
    Wagner AS (1996) Performance-oriented development of processor farm applications. In: Arabnia HR (ed) Proceedings of the international conference on parallel and distributed processing techniques and applications (PDPTA’96), Sunnyvale, CA, USA, August 1996. CSREA Press, pp 1039–1050 Google Scholar
  46. 46.
    Wang Y-R, Horng S-J, Wu C-H (2005) Efficient algorithms for the all nearest neighbor and closest pair problems on the linear array with a reconfigurable pipelined bus system. IEEE Trans Parallel Distrib Syst 16(3):193–206 CrossRefGoogle Scholar
  47. 47.
    Wilkinson B, Allen M (1999) Parallel programming techniques and applications using networked workstations and parallel computers. Prentice-Hall, Englewood Cliffs Google Scholar
  48. 48.
    Yamanaka Y, Yoshihara K, Ogura I, Numai T, Kasahara K, Ono Y (1992) Free-space optical bus using cascaded vertical-to-surface transmission electrophotonic devices. Appl Opt 31(23):4676–4681 CrossRefGoogle Scholar
  49. 49.
    Yao L (1992) Free-space optical bus-based wdma interconnects for parallel computation. In: Proceedings of the lasers and electro-optics society annual meeting (LEOS’92), November 1992, pp 588–589 Google Scholar
  50. 50.
    Yeh J-H, Kostuk RK, Tu K-Y (1996) Hybrid free-space optical bus system for board-to-board interconnections. Appl Opt 35(32):6354–6364 CrossRefGoogle Scholar
  51. 51.
    Zheng SQ, Li K, Pan Y, Pinotti MC (2001) Generalized coincident pulse technique and new addressing schemes for time-division multiplexing optical buses. J Parallel Distrib Comput 61(8):1033–1051 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Computer EngineeringKyung Hee UniversityGyeonggi-doKorea

Personalised recommendations