Advertisement

Studia Logica

, Volume 107, Issue 6, pp 1261–1277 | Cite as

The Balanced Pseudocomplemented Ockham Algebras with the Strong Endomorphism Kernel Property

  • Jie FangEmail author
Article

Abstract

An endomorphism on an algebra \({\mathcal {A}}\) is said to be strong if it is compatible with every congruence on \({\mathcal {A}}\); and \({\mathcal {A}}\) is said to have the strong endomorphism kernel property if every congruence on \({\mathcal {A}}\), other than the universal congruence, is the kernel of a strong endomorphism on \({\mathcal {A}}\). Here we characterise the structure of Ockham algebras with balanced pseudocomplementation those that have this property via Priestley duality.

Keywords

Strong endomorphism kernel property Ockham algebra Pseudocomplementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to express his appreciation to the referee for helpful comments and suggestions.

References

  1. 1.
    Balbes,  R., and P. Dwinger, Distributive lattices, University of Missouri Press, Missouri, 1974.Google Scholar
  2. 2.
    Blyth,  T.  S., J. Fang, and  H.  J. Silva, The endomorphism kernel property in finite distributive lattices and de Morgan algebras, Communications in Algebra  32(6): 2225–2242, 2004.CrossRefGoogle Scholar
  3. 3.
    Blyth, T.  S., J. Fang, and J.  C. Varlet, Ockham algebras with pseudocomplementation, Communications in Algebra  25(11): 3605–3615, 1997.CrossRefGoogle Scholar
  4. 4.
    Blyth, T.  S., J. Fang, and J.  C. Varlet, Congruences on Ockham algebras with pseudocomplementation, Communications in Algebra  27(11): 5423–5434, 1999.CrossRefGoogle Scholar
  5. 5.
    Blyth, T.  S., J. Fang, and L. Wang, The strong endomorphism kernel property in distributive double \(p\)-algebras, Scientiae Mathematicae Japonicae  76(2): 227–234, 2013.Google Scholar
  6. 6.
    Blyth,  T.  S., and  H.  J. Silva, The strong endomorphism kernel property in Ockham algebras, Communications in Algebra  36(5): 1682–1694, 2008.CrossRefGoogle Scholar
  7. 7.
    Blyth,  T.  S., and J.  C. Varlet, Ockham Algebras, Oxford University Press, Oxford, 1994.Google Scholar
  8. 8.
    Davey  B.  A., and H.  A. Priestley, Introduction to lattices and order, 2nd., Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
  9. 9.
    Fang,  G., and J. Fang, The strong endomorphism kernel property in distributive \(p\)-algebras, Southeast Asian Bull. Math.  37(4): 491–497, 2013.Google Scholar
  10. 10.
    Fang, J., The strong endomorphism kernel property in double MS-algebras, Studia Logica  105(5): 995–1013, 2017.CrossRefGoogle Scholar
  11. 11.
    Fang, J., and C. Huang, On a dual space of a balanced pseudocomplemented Ockham algebra, Southeast Asian Bull. Math.  35(2): 211–228, 2011.Google Scholar
  12. 12.
    Fang, J., and Z. Sun, Balanced pseudocomplemented Ockham algebras, Algebra Universalis  57(3): 291–302, 2007.CrossRefGoogle Scholar
  13. 13.
    Fang, J., and Z. Sun, Semilattices with the strong endomorphism kernel property, Algebra Universalis  70(4): 393–401, 2013.CrossRefGoogle Scholar
  14. 14.
    Fang, J., L. Wang, and T. Yang, The lattice of kernel ideals of a balanced pseudocomplemented Ockham algebra, Studia Logica  102(1): 29–39, 2014.CrossRefGoogle Scholar
  15. 15.
    Guričan,  J., and M. Ploščica, The strong endomorphism kernel property for modular \(p\)-algebras and for distributive lattices, Algebra Universalis  75: 243–255, 2016.CrossRefGoogle Scholar
  16. 16.
    Romanowska,  A., Subdirectly irreducible pseudocomplemented de Morgan algebras, Algebra Universalis  12: 70–75, 1981.CrossRefGoogle Scholar
  17. 17.
    Sankappanavar, H.  P., Pseudocomplemented Ockham and de Morgan algebras, Zeitschr. f. math. Logik und Grundlagen d. Math. 32: 385–394, 1986.CrossRefGoogle Scholar
  18. 18.
    Sankappanavar, H.  P., Principal congruences of pseudocomplemented de Morgan algebras, Zeitschr. f. math. Logik und Grundlagen d. Math. 33: 3–11, 1987.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and System ScienceGuangdong Polytechnic Normal UniversityGuangzhouChina

Personalised recommendations