Studia Logica

, Volume 107, Issue 1, pp 31–51 | Cite as

Gödel on Deduction

  • Kosta Došen
  • Miloš AdžićEmail author


This is an examination, a commentary, of links between some philosophical views ascribed to Gödel and general proof theory. In these views deduction is of central concern not only in predicate logic, but in set theory too, understood from an infinitistic ideal perspective. It is inquired whether this centrality of deduction could also be kept in the intensional logic of concepts whose building Gödel seems to have taken as the main task of logic for the future.


Deduction Sequent Set Extension Concept Intension General proof theory Proof-theoretic semantics 

Mathematics Subject Classification

03A05 (Philosophical and critical) 03F03 (Proof theory, general) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Work on this paper was supported by the Ministry of Education, Science and Technological Development of Serbia, while the Alexander von Humboldt Foundation has supported the presentation of matters related to it by the first-mentioned of us at the conference General Proof Theory: Celebrating 50 Years of Dag Prawitz’s “Natural Deduction”, in Tübingen, in November 2015. We are grateful to the organizers for the invitation to the conference, for their care, and in particular to Peter Schroeder-Heister, for his exquisite hospitality. We are also grateful to Gabriella Crocco for making Gödel’s deciphered notes [37] available to us, and for allowing us to quote a sentence from them translated in [45]. The publishing of [37] is part of the project Kurt Gödel Philosopher: From Logic to Cosmology, which is directed by Gabriella Crocco and funded by the French National Research Agency (Project ANR-09-BLAN-0313). She and Antonio Piccolomini d’Aragona were also very kind to invite us to the workshop Inferences and Proofs, in Marseille, in May 2016, where the first-mentioned of us delivered a talk based partly on this paper, and enjoyed their especial hospitality. We are grateful to the Institute for Advanced Study in Princeton for granting us, through the office of its librarian Mrs. Marcia Tucker and its archivist Mr. Casey Westerman, the permission to quote this sentence; we were asked to give credit for that with the following text: “All works of Kurt Gödel used with permission. Unpublished Copyright (1934–1978) Institute for Advanced Study. All rights reserved by Institute for Advanced Study.”


  1. 1.
    Adžić, M., and K. Došen, Gödel’s Notre Dame course, The Bulletin of Symbolic Logic 22:469–481, 2016 (preprint available at:;
  2. 2.
    Cassou-Noguès, P.,  Gödel’s introduction to logic in 1939, History and Philosophy of Logic 30:69–90, 2009.CrossRefGoogle Scholar
  3. 3.
    Chihara, C.S., Constructibility and Mathematical Existence, Oxford University Press, Oxford, 1990.Google Scholar
  4. 4.
    Church, A., A set of postulates for the foundation of logic, Annals of Mathematics 33:346–366, 1932.CrossRefGoogle Scholar
  5. 5.
    Church, A., A set of postulates for the foundation of logic, Annals of Mathematics 34:839–864, 1933.CrossRefGoogle Scholar
  6. 6.
    Church, A., Introduction to Mathematical Logic, Princeton University Press, Princeton, 1956.Google Scholar
  7. 7.
    Cohen, P.J., Set Theory and the Continuum Hypothesis, Benjamin, New York, 1966.Google Scholar
  8. 8.
    Crocco, G., Gödel on concepts, History and Philosophy of Logic 27:171–191, 2006.CrossRefGoogle Scholar
  9. 9.
    Dawson Jr. J.W., Logical Dilemmas: The Life and Work of Kurt Gödel, Peters, Wellesley, 1997.Google Scholar
  10. 10.
    Dawson Jr. J.W., Kurt Gödel at Notre Dame, Logic at Notre Dame, 4–10 (available at:
  11. 11.
    Dawson Jr. J.W., and C.A. Dawson, Future tasks for Gödel scholars, The Bulletin of Symbolic Logic 11:150–171, 2005.CrossRefGoogle Scholar
  12. 12.
    Došen, K., Logical consequence: A turn in style, in M.L. Dalla Chiara et al., (eds.), Logic and Scientific Methods, Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, Kluwer, Dordrecht, 1997, pp. 289–311 (preprint available at:
  13. 13.
    Došen, K., Abstraction and application in adjunction, in Z. Kadelburg, (ed.), Proceedings of the Tenth Congress of Yugoslav Mathematicians, Faculty of Mathematics, University of Belgrade, 2001, pp. 33–46 (available at:
  14. 14.
    Došen, K., Identity of proofs based on normalization and generality, Bulletin of Symbolic Logic 9:477–503, 2003 (version with corrected remark on difunctionality available at:
  15. 15.
    Došen, K., Models of deduction, in R. Kahle, and P. Schroeder-Heister, (eds.) Proceedings of the Conference Proof-Theoretic Semantics, Tübingen 1999, Synthese 148:639–657, 2006 (preprint available at:
  16. 16.
    Došen, K., A prologue to the theory of deduction, in M. Peliš, and V. Punčochář, (eds.) The Logica Yearbook 2010, College Publications, London, 2011, pp. 65–80 (preprint available at:
  17. 17.
    Došen, K., On the paths of categories: An introduction to deduction, in [49], pp. 65–77 (preprint available at:
  18. 18.
    Došen, K., and M. AdžićGödel’s natural deduction, preprint (available at:;
  19. 19.
    Došen, K., and Z. Petrić, Proof-Theoretical Coherence, KCL Publications (College Publications), London, 2004 (revised version of 2007 available at:
  20. 20.
    Gentzen, G., Über das Verhältnis zwischwen intuitionsitischer und klassischer Arithmetik, galley proof, Mathematische Annalen 1933 (English translation: On the relation bistic and classical arithmetic, in [25], pp. 53–67).Google Scholar
  21. 21.
    Gentzen, G., Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39:176–210, 405–431, 1935 (English translation: Investigations into logical deduction, in [25], pp. 68–131, 312–317; French translation in [24]; Russian translation by A.V. Idel’son, Issledovaniya logicheskih vyvodov, in [39], pp. 9–76).Google Scholar
  22. 22.
    Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, 112:493–565, 1936 (English translation: The consistency of elementary number theory, in [25], pp. 132–213; Russian translation by G.E. Mints: Neprotivorechivost chistoĭ teorii chisel, in [39], pp. 77–153).Google Scholar
  23. 23.
    Gentzen, G., Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften (N.S.), 4:19–44, 1938 (English translation: New version of the consistency proof for elementary number theory, in [25], pp. 252–286; Russian translation by G.E. Mints: Novoe izlozhenie dokazatel’stva neprotivorechivosti dlya chistoĭ teorii chisel, in [39], pp. 154–190).Google Scholar
  24. 24.
    Gentzen, G., Recherches sur la déduction logique (R. Feys and J. Ladrière, editors and translators), Presses Universitaires de France, Paris, 1955.Google Scholar
  25. 25.
    Gentzen, G., The Collected Papers of Gerhard Gentzen (M.E. Szabo, editor and translator), North-Holland, Amsterdam, 1969.Google Scholar
  26. 26.
    Gödel, K., Zur intuitionistischen Arithmetik und Zahlentheorie, Ergebnisse eines mathematischen Kolloquiums, 4:34–38, 1933 (reprinted with an English translation: On intuitionistic arithmetic and number theory, in [32], pp. 286–295).Google Scholar
  27. 27.
    Gödel, K., Vortrag bei Zilsel, notes for a lecture, 1938, printed with an English translation: Lecture at Zilsel’s, in [34], pp. 186–113.Google Scholar
  28. 28.
    Gödel, K., Russell’s mathematical logic, in P.A. Schilpp, (ed.) The Philosophy of Bertrand Russell, Northwestern University, Evanston, 1944 (reprinted in [33], pp. 119–141).Google Scholar
  29. 29.
    Gödel, K., Remarks before the Princeton bicentennial conference on problems in mathematics, in M. Davis, (ed.) The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, Hewlett, 1965, pp. 84–88 (reprinted in [33], pp. 150–153).Google Scholar
  30. 30.
    Gödel, K., Some Basic Theorems on the Foundations of Mathematics and Their Implications, notes for a lecture, 1951, in [34], pp. 304–323.Google Scholar
  31. 31.
    Gödel, K., Is mathematics syntax of language? manuscript, 1953–1959, in [34], pp. 334–356.Google Scholar
  32. 32.
    Gödel, K., Collected Works, Volume I, Publications 1929–1936 S. Feferman et al., (eds.), Oxford University Press, New York, 1986.Google Scholar
  33. 33.
    Gödel, K., Collected Works, Volume II, Publications 1938–1974 S. Feferman et al., (eds.), Oxford University Press, New York, 1990.Google Scholar
  34. 34.
    Gödel, K., Collected Works, Volume III, Unpublished Essays and Lectures S. Feferman et al., (eds.), Oxford University Press, New York, 1995.Google Scholar
  35. 35.
    Gödel, K., Collected Works, Volume IV, Correspondence A-G J.W. Dawson, Jr., et al., (eds.), Oxford University Press, New York, 2003.Google Scholar
  36. 36.
    Gödel, K., Collected Works, Volume V, Correspondence H-Z J.W. Dawson, Jr., et al., (eds.), Oxford University Press, New York, 2003.Google Scholar
  37. 37.
    Gödel, K., Maxims and Philosophical Remarks, Volume X, G. Crocco et al., (eds.) (available at:
  38. 38.
    Gödel, R., O. Tausskytodd, S.C. Kleene, and G. KreiselGödel Remembered: Gödel-Symposium in Salzburg, 10–12 July 1983, P. Weingartner and L. Schmetterer, (eds.), Bibliopolis, Naples, 1987.Google Scholar
  39. 39.
    Idel’son, A.V., and G.E. Mints (eds.), Matematicheskaya teoriya logicheskogo vyvoda [Mathematical Theory of Logical Deduction], Nauka, Moscow, 1967.Google Scholar
  40. 40.
    Kirby, L., Finitary set theory, Notre Dame Journal of Formal Logic 50:227–244, 2009.CrossRefGoogle Scholar
  41. 41.
    Kleene, S.C., Introduction to Metamathematics, North-Holland, Amsterdam, 1952.Google Scholar
  42. 42.
    Kleene, S.C., Permutability of inferences in Gentzen’s calculi LK and LJ, Two Papers on the Predicate Calculus, Memoirs of the American Mathematical Society 10:1–26, 1952 (Russian translation: Perestanovochnost primeneniĭ pravil v gencenovskih ischisleniyah LK i LJ, in [39], pp. 208–236).Google Scholar
  43. 43.
    Kleene, S.C., Gödels impression on students of logic in the 1930’s, in [38], pp. 49–64.Google Scholar
  44. 44.
    Kleene, S.C., and J.B. Rosser, The inconsistency of certain formal logics, Annals of Mathematics 36:630–636, 1935.CrossRefGoogle Scholar
  45. 45.
    Kostić, J., Gödel and the language of mathematics, Belgrade Philosophical Annual 28:45–68, 2015.CrossRefGoogle Scholar
  46. 46.
    Kreisel, G., Gödel’s excursions into intuitionistic logic, in [38], pp. 65–186.Google Scholar
  47. 47.
    Lawvere, F.W., Adjointness in foundations, Dialectica 23:281–296, 1969.CrossRefGoogle Scholar
  48. 48.
    Parsons, C., Hao Wang as philosopher and interpreter of Gödel, Philosophia Mathematica 6:3–24, 1998.CrossRefGoogle Scholar
  49. 49.
    Piecha, T., and P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, Springer, Cham, 2016.Google Scholar
  50. 50.
    Prawitz, D., Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm, 1965.Google Scholar
  51. 51.
    Ramsey, F.P., The foundations of mathematics, in Proceedings of the London Mathematical Society, vol. 25, 1926, pp. 338–384 (reprinted in: R.B. Braithwaite, (ed.), The Foundations of Mathematics and other Logical Essays, Routledge, London, 1931, pp. 1–61).Google Scholar
  52. 52.
    Schroeder-Heister, P., Open problems in proof-theoretic semantics, in [49], pp. 253–281.Google Scholar
  53. 53.
    Tarski, A., Logic, Semantics, Metamathematics: Papers from 1922 to 1938, J.H. Woodger, (ed.), Oxford University Press, Oxford, 1956 (second edition, J. Corcoran, (ed.), Hackett, Indianapolis, 1983).Google Scholar
  54. 54.
    van Atten, M., Two draft letters of Gödel on self-knowledge of reason, Philosophia Mathematica 14:255–261, 2006 (reprinted in: M. van Atten, Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer, Springer, Cham, 2015, pp. 157–162).Google Scholar
  55. 55.
    Wang, H.,  From Mathematics to Philosophy, Routledge, London, 1974.Google Scholar
  56. 56.
    Wang, H.A Logical Journey: From Gödel to Philosophy, The MIT Press, Cambridge, MA, 1996.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of BelgradeBelgradeSerbia
  2. 2.Mathematical InstituteSerbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations