Studia Logica

, Volume 105, Issue 4, pp 873–879

Book Reviews

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cholak, P. A., C. G. Jockusch, and T. A. Slaman, On the strength of Ramsey’s theorem for pairs, The Journal of Symbolic Logic 66(1): 1–55, 2001.CrossRefGoogle Scholar
  2. 2.
    Chong, C. T., T. A. Slaman, and Y. Yang, The inductive strength of Ramsey’s theorem for pairs, Advances in Mathematics 308: 121–141, 2017.CrossRefGoogle Scholar
  3. 3.
    Hirst, J. L., Combinatorics in Subsystems of Second Order Arithmetic. Ph.D. thesis, Pennsylvania State University, 1987.Google Scholar
  4. 4.
    Jockusch, C. G., Ramsey’s theorem and recursion theory, The Journal of Symbolic Logic 37(2): 268–280, 1972.CrossRefGoogle Scholar
  5. 5.
    Jockusch, C. G., and R. I. Soare, \(\Pi ^0_1\) classes and degrees of theories, Transactions of the American Mathematical Society 361: 5805–5837, 1972.Google Scholar
  6. 6.
    Liu, J., \({{\sf RT}}^2_2\), The Journal of Symbolic Logic 77(2): 609–620, 2012.CrossRefGoogle Scholar
  7. 7.
    Patey, L., and K. Yokoyama, The proof-theoretic strength of Ramsey’s theorem for pairs and two colors, 2016. arXiv:1601.00050v3
  8. 8.
    Seetapun, D., and T. A. Slaman, On the Strength of Ramsey’s Theorem, Notre Dame Journal of Formal Logic 36(4): 570–582, 1995.CrossRefGoogle Scholar
  9. 9.
    Simpson, S. G., Subsystems of Second Order Arithmetic, 2nd edn., Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
  10. 10.
    Specker, E., Ramsey’s Theorem does not hold in recursive set theory, in R. O. Gandy, and C. M. E. Yates, (eds.), Logic Colloquium ’69, vol. 61 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1971, pp. 439–442.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Mathematics, University of BristolBristolUK

Personalised recommendations