Advertisement

Studia Logica

, Volume 106, Issue 2, pp 281–293 | Cite as

Semi-intuitionistic Logic with Strong Negation

  • Juan Manuel Cornejo
  • Ignacio ViglizzoEmail author
Article

Abstract

Motivated by the definition of semi-Nelson algebras, a propositional calculus called semi-intuitionistic logic with strong negation is introduced and proved to be complete with respect to that class of algebras. An axiomatic extension is proved to have as algebraic semantics the class of Nelson algebras.

Keywords

Semi-Nelson algebras Intuitionism Semi-intuitionistic logic Intuitionistic logic with strong negation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the constructive comments and corrections offered by the referees. This work was partially supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina).

References

  1. 1.
    Cornejo, J. M., Semi-intuitionistic logic, Studia Logica 98(1–2):9–25, 2011.CrossRefGoogle Scholar
  2. 2.
    Cornejo, J. M., and I. D. Viglizzo, On some semi-intuitionistic logics, Studia Logica 103(2):303–344, 2015.CrossRefGoogle Scholar
  3. 3.
    Cornejo, J. M., and I. D. Viglizzo, Semi-Nelson algebras, Order 2016. DOI: 10.1007/s11083-016-9416-x.
  4. 4.
    Cornejo, J. M., and I. D. Viglizzo, Proofs of Some Propositions of the Semi-intuitionistic Logic with Strong Negation. Informe Técnico Interno 103, Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 2017. http://inmabb-conicet.gob.ar/publicaciones/iti/iti103.pdf.
  5. 5.
    Fitting, M. C., Intuitionistic Logic, Model Theory and Forcing, Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1969.Google Scholar
  6. 6.
    Font, J. M., R. Jansana, and D. Pigozzi, A survey of abstract algebraic logic, Studia Logica 74(1–2):13–97, 2003. Abstract algebraic logic, Part II (Barcelona, 1997).Google Scholar
  7. 7.
    Monteiro, A., and L. Monteiro, Axiomes indépendants pour les algèbres de Nelson, de Łukasiewicz trivalentes, de De Morgan et de Kleene, in Unpublished Papers, I, vol 40 of Notas Lógica Mat., Universidad Nacional del Sur, Bahía Blanca, 1996, p 13.Google Scholar
  8. 8.
    Nelson, D., Constructible falsity, The Journal of Symbolic Logic 14:16–26, 1949.CrossRefGoogle Scholar
  9. 9.
    Rasiowa, H., \({\cal{N}}\)-lattices and constructive logic with strong negation, Fundamenta Mathematicae 46:61–80, 1958.Google Scholar
  10. 10.
    Rasiowa, H., An Algebraic Approach to Non-classical Logics, Vol. 78, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1974.CrossRefGoogle Scholar
  11. 11.
    Sankappanavar, H. P., Semi-Heyting algebras, American Mathematical Society Abstracts 6(1):13, 1985.Google Scholar
  12. 12.
    Sankappanavar, H. P., Semi-Heyting algebras: An abstraction from Heyting algebras, in Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), Actas Congreso “Dr. Antonio A. R. Monteiro”, Universidad Nacional del Sur, Bahía Blanca, 2008, pp. 33–66.Google Scholar
  13. 13.
    Vakarelov, D., Notes on \({\cal{N}}\)-lattices and constructive logic with strong negation, Studia Logica 36(1–2):109–125, 1977.CrossRefGoogle Scholar
  14. 14.
    Viglizzo, I., Álgebras de Nelson. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur. Magister dissertation in Mathematics, 1999. https://sites.google.com/site/viglizzo/viglizzo99nelson.

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Matemática de Bahía Blanca (INMABB)Universidad Nacional del Sur-CONICETBahía BlancaArgentina
  2. 2.Departamento de MatemáticaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina

Personalised recommendations