Studia Logica

, Volume 106, Issue 5, pp 969–999 | Cite as

Infinite Populations, Choice and Determinacy

  • Tadeusz Litak


This paper criticizes non-constructive uses of set theory in formal economics. The main focus is on results on preference aggregation and Arrow’s theorem for infinite electorates, but the present analysis would apply as well, e.g., to analogous results in intergenerational social choice. To separate justified and unjustified uses of infinite populations in social choice, I suggest a principle which may be called the Hildenbrand criterion and argue that results based on unrestricted axiom of choice do not meet this criterion. The technically novel part of this paper is a proposal to use a set-theoretic principle known as the axiom of determinacy (\(\mathsf {AD}\)), not as a replacement for Choice, but simply to eliminate applications of set theory violating the Hildenbrand criterion. A particularly appealing aspect of \(\mathsf {AD}\) from the point of view of the research area in question is its game-theoretic character.


Axiom of choice Axiom of determinacy Multiverse intergenerational social choice Preference aggregation Arrow’s impossibility theorem Social welfare analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aumann, R. J., Markets with a continuum of traders, Econometrica 32(1–2):39–50, 1964.CrossRefGoogle Scholar
  2. 2.
    Bedrosian, G.A. Palmigiano, and Z. Zhao, Generalized ultraproduct and Kirman-Sondermann correspondence for vote abstention, in Proceedings of LORI 2015, 2015, pp. 27–39.CrossRefGoogle Scholar
  3. 3.
    Bell, J. L., The axiom of choice, in E. N. Zalta, (ed.), The Stanford Encyclopedia of Philosophy, summer 2015 edn., 2015.
  4. 4.
    Bell, J. L.Toposes and Local Set Theories: an Introduction, vol. 14 in Logic Guides, Oxford University Press, 1988.Google Scholar
  5. 5.
    Bernays, P., A system of Axiomatic Set Theory: Part III. Infinity and enumerability. Analysis, The Journal of Symbolic Logic 7(2):65–89, 1942.CrossRefGoogle Scholar
  6. 6.
    Boolos, G., The iterative conception of set, The Journal of Philosophy 68(8):215–231, 1971.CrossRefGoogle Scholar
  7. 7.
    Brunner, N., and H. R. Mihara, Arrow’s theorem, Weglorz’ models and the Axiom of Choice, Mathematical Logic Quarterly 46(3):335–359, 2000.CrossRefGoogle Scholar
  8. 8.
    Chichilnisky, G., and G. Heal, Social choice with infinite populations: construction of a rule and impossibility results, Social Choice and Welfare 14(2):303–318, 1997.CrossRefGoogle Scholar
  9. 9.
    Diaconescu, R., Axiom of choice and complementation, Proc. Amer. Math. Soc. 51(1):176–178, 1975.CrossRefGoogle Scholar
  10. 10.
    Fishburn, P. C., Arrow’s impossibility theorem: concise proof and infinite voters, Journal of Economic Theory 2(1):103–106, 1970.CrossRefGoogle Scholar
  11. 11.
    Forster, T., The iterative conception of set, The Review of Symbolic Logic 1:97–110, 2008.CrossRefGoogle Scholar
  12. 12.
    Fraenkel, A. A.Y. Bar-Hillel, and A. LevyFoundations of Set Theory. Second Revised Edition, vol. 67 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1973.Google Scholar
  13. 13.
    Goodman, N., and J. Myhill, Choice implies excluded middle, Mathematical Logic Quarterly 24(25–30):461–461, 1978.CrossRefGoogle Scholar
  14. 14.
    Hamkins, J. D., The set-theoretic multiverse, Review of Symbolic Logic 5:416–449, 2012.CrossRefGoogle Scholar
  15. 15.
    Hellman, G., Does category theory provide a framework for mathematical structuralism?, Philosophia Mathematica 11(2):129–157, 2003.CrossRefGoogle Scholar
  16. 16.
    Herzberg, F., and D. Eckert, Impossibility results for infinite-electorate abstract aggregation rules, Journal of Philosophical Logic 41(1):273–286, 2011.CrossRefGoogle Scholar
  17. 17.
    Herzberg, F., and D. Eckert, The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates, Mathematical Social Sciences, Computational foundations of social choice 64(1):41–47, 2012.Google Scholar
  18. 18.
    Herzberg, F., L. Lauwers, L. van Liedekerke, and E. S. Fianu, Addendum to L. Lauwers and L. Van Liedekerke Ultraproducts and aggregation [J. Math. Econ. 24 (3) (1995)], Journal of Mathematical Economics 46(2):277–278, 2010.CrossRefGoogle Scholar
  19. 19.
    Hildenbrand, W., On economies with many agents, Journal of Economic Theory 2(2):161–188, 1970.CrossRefGoogle Scholar
  20. 20.
    Jech, T. J.The Axiom of Choice, vol. 75 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1973.Google Scholar
  21. 21.
    Kanamori, A.The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, Springer Monographs in Mathematics, Springer Berlin Heidelberg, 2008.Google Scholar
  22. 22.
    Kechris, A. S., The axiom of determinancy implies dependent choices in L(\(\mathbb{R}\)), The Journal of Symbolic Logic 49(1):161–173, 1984.CrossRefGoogle Scholar
  23. 23.
    Kechris, A. S.Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer New York, 1985.Google Scholar
  24. 24.
    Kirman, A. P., and D. Sondermann, Arrow’s theorem, many agents, and invisible dictators, Journal of Economic Theory 5(2):267–277, 1972.CrossRefGoogle Scholar
  25. 25.
    Kuratowski, K., and A. MostowskiSet Theory, vol. 53 of Studies in Logic and the Foundations of Mathematics, Elsevier, 1968.Google Scholar
  26. 26.
    Lambek, J., and P. J. Scott, Introduction to Higher Order Categorical Logic, no. 7 in Cambridge studies in advanced mathematics, Cambridge University Press, 1986.Google Scholar
  27. 27.
    Lauwers, L., Ordering infinite utility streams comes at the cost of a non-Ramsey set, Journal of Mathematical Economics 46(1):32–37, 2010.CrossRefGoogle Scholar
  28. 28.
    Lauwers, L., Intergenerational equity, efficiency, and constructibility, Economic Theory 49(2):227–242, 2012.CrossRefGoogle Scholar
  29. 29.
    Lauwers, L., and L. Van Liedekerke, Ultraproducts and aggregation, Journal of Mathematical Economics 24(3):217–237, 1995.CrossRefGoogle Scholar
  30. 30.
    Martin-Löf, P.100 Years of Zermelo’s Axiom of Choice: What was the Problem with It?, Springer, Netherlands, Dordrecht, 2009, pp. 209–219.CrossRefGoogle Scholar
  31. 31.
    Martin-Löf, P., and G. Sambin, Intuitionistic type theory, Studies in proof theory, Bibliopolis, 1984.Google Scholar
  32. 32.
    McLarty, C., Two constructivist aspects of category theory, Philosophia Scientae (Cahier spécial 6):95–114, 2006.Google Scholar
  33. 33.
    Mihara, R. H., Arrow’s theorem and Turing computability, Economic Theory 10(2):257–276, 1997.CrossRefGoogle Scholar
  34. 34.
    Mihara, R. H., Arrow’s theorem, countably many agents, and more visible invisible dictators, Journal of Mathematical Economics 32(3):267–287, 1999.CrossRefGoogle Scholar
  35. 35.
    Monjardet, B., Chapter 5 - on the use of ultrafilters in social choice theory, in P. K. Pattanaik, and M. Salles, (eds.), Social Choice and Welfare, vol. 145 of Contributions to Economic Analysis, Elsevier, 1983, pp. 73–78.Google Scholar
  36. 36.
    Mycielski, J., On the axiom of determinateness, Fundamenta Mathematicae 53(2):205–224, 1964.CrossRefGoogle Scholar
  37. 37.
    Mycielski, J., On the axiom of determinateness (II), Fundamenta Mathematicae 59(2):203–212, 1966.CrossRefGoogle Scholar
  38. 38.
    Mycielski, J., and H. Steinhaus, A mathematical axiom contradicting the axiom of choice, Bulletin de l’Académie Polonaise des Sciences 10:1–3, 1962.Google Scholar
  39. 39.
    Mycielski, J., and S. Świerczkowski, On the Lebesgue measurability and the axiom of determinateness, Fundamenta Mathematicae 54(1):67–71, 1964.CrossRefGoogle Scholar
  40. 40.
    Ostroy, J. M., and W. R. Zame, Nonatomic economies and the boundaries of perfect competition, Econometrica 62:593–633, 1994.CrossRefGoogle Scholar
  41. 41.
    Parsons, C., What is the iterative conception of set?, in R. E. Butts, and J. Hintikka, (eds.), Logic, Foundations of Mathematics, and Computability Theory, vol. 9 of The University of Western Ontario Series in Philosophy of Science, Springer Netherlands, 1977, pp. 335–367.Google Scholar
  42. 42.
    Pitts, A., Nominal techniques, ACM SIGLOG News 3(1):57–72, 2016.Google Scholar
  43. 43.
    Pitts, A. M.Nominal Sets: Names and Symmetry in Computer Science, vol. 57 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2013.Google Scholar
  44. 44.
    Pivato, M., Additive representation of separable preferences over infinite products, Theory and Decision 77(1):31–83, 2014.CrossRefGoogle Scholar
  45. 45.
    Shelah, S., Can you take Solovay’s inaccessible away?, Israel Journal of Mathematics 48(1):1–47, 1984.CrossRefGoogle Scholar
  46. 46.
    Sierpiński, W., Sur une proposition qui entraîne l’existence des ensembles non mesurables, Fundamenta Mathematicae 34(1):157–162, 1947.CrossRefGoogle Scholar
  47. 47.
    Solovay, R. M., A model of set-theory in which every set of reals is Lebesgue measurable, Annals of Mathematics 92(1):1–56, 1970.CrossRefGoogle Scholar
  48. 48.
    Sørensen, M. H., and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, vol. 149 of Studies in Logic and the Foundations of Mathematics, Elsevier Science Inc., New York, NY, USA, 2006.CrossRefGoogle Scholar
  49. 49.
    Steel, J. R., What is ...a Woodin cardinal?, Notices of the AMS 54(9):1146–1147, 2007.Google Scholar
  50. 50.
    Svensson, L.-G., Equity among generations, Econometrica 48(5):1251–1256, 1980.CrossRefGoogle Scholar
  51. 51.
    Zame, W., Can intergenerational equity be operationalized?, Theoretical Economics 2:2, 2007.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Informatik 8FAU Erlangen-NürnbergErlangenGermany

Personalised recommendations