Advertisement

Studia Logica

, Volume 105, Issue 2, pp 407–429 | Cite as

Notes on the Computational Aspects of Kripke’s Theory of Truth

  • Stanislav O. Speranski
Article
  • 211 Downloads

Abstract

The paper contains a survey on the complexity of various truth hierarchies arising in Kripke’s theory. I present some new arguments, and use them to obtain a number of interesting generalisations of known results. These arguments are both relatively simple, involving only the basic machinery of constructive ordinals, and very general.

Keywords

Truth Groundedness Dependence Inductive definitions Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgess, J. P., The truth is never simple, Journal of Symbolic Logic 51(4):663–681, 1986. Doi: 10.2307/2274021 CrossRefGoogle Scholar
  2. 2.
    Cain, J., and Z. Damnjanovic, On the weak Kleene scheme in Kripke’s theory of Truth, Journal of Symbolic Logic 56(4):1452–1468, 1991. Doi: 10.2307/2275486 CrossRefGoogle Scholar
  3. 3.
    Fischer, M., V. Halbach, J. Kriener, and J. Stern, Axiomatizing semantic theories of truth? Review of Symbolic Logic 8(2):257–278, 2015. Doi: 10.1017/S1755020314000379 CrossRefGoogle Scholar
  4. 4.
    Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic, Springer, 1993.Google Scholar
  5. 5.
    Feferman, S., Axioms for determinateness and truth, Review of Symbolic Logic 1(2):204–217, 2008. Doi: 10.1017/S1755020308080209 CrossRefGoogle Scholar
  6. 6.
    Fitting, M., A theory of truth that prefers falsehood, Journal of Philosophical Logic 26(5):477–500, 1997. Doi: 10.1023/A:1004217812355 CrossRefGoogle Scholar
  7. 7.
    Halpern, J. Y., Presburger arithmetic with unary predicates is \(\Pi _1^1\) complete, Journal of Symbolic Logic 56(2):637–642, 1991. Doi: 10.2307/2274706 CrossRefGoogle Scholar
  8. 8.
    Kripke, S., Outline of a theory of truth, The Journal of Philosophy 72(19):690–716, 1991. Doi: 10.2307/2024634 CrossRefGoogle Scholar
  9. 9.
    Leitgeb, H., What truth depends on, Journal of Philosophical Logic 34(2):155–192, 2005. Doi: 10.1007/s10992-004-3758-3 CrossRefGoogle Scholar
  10. 10.
    Magidor, O., Category Mistakes, Oxford University Press, 2013.Google Scholar
  11. 11.
    Matiyasevich, Y. V., Hilbert’s Tenth Problem, MIT Press, 1993.Google Scholar
  12. 12.
    Meadows, T., Infinitary tableau for semantic truth, Review of Symbolic Logic 8(2):207–235, 2015. Doi: 10.1017/S175502031500012X CrossRefGoogle Scholar
  13. 13.
    Meadows, T., Truth, dependence and supervaluation: living with the ghost, Journal of Philosophical Logic 42(2):221–240, 2013. Doi: 10.1007/s10992-011-9219-x CrossRefGoogle Scholar
  14. 14.
    Moschovakis, Y. N., Elementary Induction on Abstract Structures, North-Holland Publishing Company, 1974.Google Scholar
  15. 15.
    Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, 1967.Google Scholar
  16. 16.
    Sacks, G. E., Higher Recursion Theory, Springer, 1990.Google Scholar
  17. 17.
    Schindler, T., Type-Free Truth (PhD Thesis). Ludwig-Maximilians-Universität München, 2015. Available online at https://edoc.ub.uni-muenchen.de/18335/
  18. 18.
    Speranski, S. O., A note on definability in fragments of arithmetic with free unary predicates, Archive for Mathematical Logic 52(5–6):507–516, 2013. Doi: 10.1007/s00153-013-0328-9 CrossRefGoogle Scholar
  19. 19.
    Speranski, S. O., Some new results in monadic second-order arithmetic, Computability 4(2):159–174, 2015. Doi: 10.3233/COM-150036 CrossRefGoogle Scholar
  20. 20.
    Welch, P. D., The complexity of the dependence operator, Journal of Philosophical Logic 44(3):337–340, 2014. Doi: 10.1007/s10992-014-9324-8

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations