Studia Logica

, Volume 105, Issue 2, pp 361–405 | Cite as

General-Elimination Stability

  • Bruno Jacinto
  • Stephen Read
Open Access


General-elimination harmony articulates Gentzen’s idea that the elimination-rules are justified if they infer from an assertion no more than can already be inferred from the grounds for making it. Dummett described the rules as not only harmonious but stable if the E-rules allow one to infer no more and no less than the I-rules justify. Pfenning and Davies call the rules locally complete if the E-rules are strong enough to allow one to infer the original judgement. A method is given of generating harmonious general-elimination rules from a collection of I-rules. We show that the general-elimination rules satisfy Pfenning and Davies’ test for local completeness, but question whether that is enough to show that they are stable. Alternative conditions for stability are considered, including equivalence between the introduction- and elimination-meanings of a connective, and recovery of the grounds for assertion, finally generalizing the notion of local completeness to capture Dummett’s notion of stability satisfactorily. We show that the general-elimination rules meet the last of these conditions, and so are indeed not only harmonious but also stable.


Harmony General-elimination rules Stability Local completeness Grounds Gentzen 


  1. 1.
    Blamey, S., and L. Humberstone, A perspective on modal sequent logic, Publications of the Research Institute for Mathematical Sciences, Kyoto University 27:763-82, 1991.Google Scholar
  2. 2.
    Cutland N. J., Gibbins P. F.: A regular sequent calculus for quantum logic in which \({\wedge}\) and \({\vee}\) are dual. Logique et Analyse 25, 221–248 (1982)Google Scholar
  3. 3.
    Davies R., Pfenning F.: A modal analysis of staged computation. Journal of the ACM 48, 555–604 (2001)CrossRefGoogle Scholar
  4. 4.
    Dummett M.: Frege: Philosophy of Language. Duckworth, London (1973)Google Scholar
  5. 5.
    Dummett M.: Elements of Intuitionism. Oxford UP, Oxford (1977)Google Scholar
  6. 6.
    Dummett M.: Logical Basis of Metaphysics. Duckworth, London (1991)Google Scholar
  7. 7.
    Dyckhoff, R., Implementing a simple proof assistant, in J. Derrick, and H. Lewis (eds.), Proceedings of the Workshop on Programming for Logic Teaching, Leeds 1987, Centre for Theoretical Computer Science and Departments of Pure Mathematics and Philosophy, University of Leeds, Leeds, 1988, pp. 49–59.Google Scholar
  8. 8.
    Dyckhoff R.: Some remarks on proof-theoretic semantics, in Schroeder-Heister, P., Piecha, T. (eds.) Advances in Proof-Theoretic Semantics, pp. 79–93. Springer, Cham (2016)Google Scholar
  9. 9.
    Francez N., Dyckhoff R.: A note on harmony. Journal of Philosophical Logic 41, 613–628 (2012)CrossRefGoogle Scholar
  10. 10.
    Francez N.: Proof-Theoretic Semantics. College, London (2015)Google Scholar
  11. 11.
    Gentzen, G., Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39:175–210, 405–31, 1935. English translation in [13].Google Scholar
  12. 12.
    Gentzen G.: The consistency of elementary number theory, in Szabo, M. (ed.) The Collected Papers of Gerhard Gentzen, pp. 132–213. North-Holland, Amsterdam (1969)Google Scholar
  13. 13.
    Gentzen G.: Investigations concerning logical deduction, in Szabo, M. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)Google Scholar
  14. 14.
    Gentzen G.: On the existence of independent axiom systems for infinite sentence systems, in Szabo, M. (ed.) The Collected Papers of Gerhard Gentzen., pp. 29–52. North-Holland, Amsterdam (1969)Google Scholar
  15. 15.
    Hermes H.: Zum Inversionsprinzip der operativen Logik, in Heyting, A. (ed.) Constructivity in Mathematics, pp. 62–68. North-Holland, Amsterdam (1959)Google Scholar
  16. 16.
    Humberstone L.: The Connectives. MIT Bradford, Cambridge, MA (2011)Google Scholar
  17. 17.
    Kurbis N.: Proof-theoretic semantics, a problem with negation and prospects for modality. Journal of Philosophical Logic 44, 713–727 (2015)CrossRefGoogle Scholar
  18. 18.
    Lorenzen P.: Konstruktive Begründung der Mathematik. Mathematische Zeitschrift 53, 162–202 (1950)CrossRefGoogle Scholar
  19. 19.
    Lorenzen P.: Einführung in die operative Logik und Mathematik. Springer, Berlin (1955)CrossRefGoogle Scholar
  20. 20.
    Milne P.: Inversion principles and introduction rules, in Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning. Outstanding Contributions to Logic, pp. 189–224. Springer, New York (2015)Google Scholar
  21. 21.
    Moriconi, E., and L. Tesconi, On inversion principles. History and Philosophy of Logic 29:103-13, 2008.Google Scholar
  22. 22.
    Negri S., von Plato J.: Structural Proof Theory. Cambridge UP, Cambridge (2001)CrossRefGoogle Scholar
  23. 23.
    Negri S., von Plato J.: Meaning in use, in Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning. Outstanding Contributions to Logic, pp. 239–257. Springer, New York (2015)Google Scholar
  24. 24.
    Pelletier F. J.: A brief history of natural deduction. History and Philosophy of Logic 20, 1–31 (1999)CrossRefGoogle Scholar
  25. 25.
    Pfenning F., Davies R.: A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science 11, 511–540 (2001)CrossRefGoogle Scholar
  26. 26.
    Prawitz D.: Natural Deduction. Almqvist & Wiksell, Stockholm (1965)Google Scholar
  27. 27.
    Prawitz D.: Towards the foundation of a general proof theory, in Suppes, P., Henkin, L., Joja, A., Moisil, G. C. (eds.) Logic, Methodology and Philosophy of Science IV: Proceedings of the 1971 International Congress, pp. 225–250. North-Holland, Amsterdam (1973)Google Scholar
  28. 28.
    Prawitz D.: Proofs and the meaning and completeness of the logical constants, in Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic, pp. 25–40. Reidel, Dordrecht (1979)CrossRefGoogle Scholar
  29. 29.
    Prawitz D.: Remarks on some approaches to the concept of logical consequence. Synthese 62, 153–171 (1985)CrossRefGoogle Scholar
  30. 30.
    Quine W. V.: Methods of Logic. Henry Holt & Co., New York (1950)Google Scholar
  31. 31.
    Read S.: Harmony and autonomy in classical logic. Journal of Philosophical Logic 29, 123–154 (2000)CrossRefGoogle Scholar
  32. 32.
    Read S.: General-elimination harmony and the meaning of the logical constants. Journal of Philosophical Logic 39, 557–576 (2010)CrossRefGoogle Scholar
  33. 33.
    Read, S., General-elimination harmony and higher-level rules. In Wansing [43], pp. 293–312.Google Scholar
  34. 34.
    Read S.: Proof-theoretic validity, in Caret, C., Hjortland, O. (eds.) Foundations of Logical Consequence, pp. 136–158. Oxford University Press, Oxford (2015)CrossRefGoogle Scholar
  35. 35.
    Schroeder-Heister P.: A natural extension of natural deduction. Journal of Symbolic Logic 49, 1284–1300 (1984)CrossRefGoogle Scholar
  36. 36.
    Schroeder-Heister P.: Generalized definitional reflection and the inversion principle. Logica Universalis 1, 355–376 (2007)CrossRefGoogle Scholar
  37. 37.
    Schroeder-Heister P.: The calculus of higher-level rules, propositional quantifiers, and the foundational approach to proof-theoretic harmony. Studia Logica 102, 1185–1216 (2014)CrossRefGoogle Scholar
  38. 38.
    Schroeder-Heister P.: Harmony in proof-theoretic semantics: A reductive analysis, in Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning. Outstanding Contributions to Logic., pp. 329–358. Springer, New York (2015)Google Scholar
  39. 39.
    Schroeder-Heister P., Olkhovikov G.: On flattening elimination rules. Review of Symbolic Logic 7, 60–72 (2014)CrossRefGoogle Scholar
  40. 40.
    Szabo, M. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam (1969)Google Scholar
  41. 41.
    Troelstra A. S., Schwichtenberg H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  42. 42.
    von Plato J.: Natural deduction with general elimination rules. Archive for Mathematical Logic 40, 521–547 (2001)Google Scholar
  43. 43.
    Wansing, H. (ed.): Dag Prawitz on Proofs and Meaning. Outstanding Contributions to Logic. Springer, New York (2015)Google Scholar
  44. 44.
    Zucker J. I., Tragesser R. S.: The adequacy problem for inferential logic. Journal of Philosophical Logic 7, 501–516 (1978)Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Arché Research CentreUniversity of St AndrewsSt AndrewsScotland, UK

Personalised recommendations