Advertisement

Studia Logica

, Volume 104, Issue 5, pp 869–916 | Cite as

Adaptive Logic Characterizations of Input/Output Logic

  • Christian StraßerEmail author
  • Mathieu Beirlaen
  • Frederik Van De Putte
Article

Abstract

We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions.

Keywords

Input/output logic Adaptive logics Proof theory Nonmonotonic logic Deontic logic Deontic conflicts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., and H. Prade, Towards a logic of argumentation, in E. Hüllermeier, S. Link, T. Fober, and B. Seeger (eds.), Scalable Uncertainty Management, vol. 7520 of Lecture Notes in Computer Science, Springer, Berlin, 2012, pp. 558–565.Google Scholar
  2. 2.
    Apothéloz D., Brandt P.-Y., Quiroz G.: The function of negation in argumentation. Journal of Pragmatics 19(1), 23–38 (1993)CrossRefGoogle Scholar
  3. 3.
    Batens, D., A survey of inconsistency-adaptive logics, in D. Batens, G. Priest, and J.-P. van Bendegem (eds.), Frontiers of Paraconsistent Logic, Research Studies Press, Kings College Publication, Baldock, 2000, pp. 49–73.Google Scholar
  4. 4.
    Batens, D., The need for adaptive logics in epistemology, in Logic, Epistemology, and the Unity of Science, Springer, Berlin, 2004, pp. 459–485.Google Scholar
  5. 5.
    Batens D.: A procedural criterion for final derivability in inconsistency-adaptive logics. Journal of Applied Logic 3, 221–250 (2005)CrossRefGoogle Scholar
  6. 6.
    Batens D.: A universal logic approach to adaptive logics. Logica Universalis 1, 221–242 (2007)CrossRefGoogle Scholar
  7. 7.
    Batens, D., Towards a dialogic interpretation of dynamic proofs, in C. Dégremont, L. Keiff, and H. Rückert (eds.), Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman, College Publications, London, 2009, pp. 27–51Google Scholar
  8. 8.
    Batens D., Provijn D.: the search paths in the proofs. A study in proof heuristics. Logique et Analyse 173-175, 113–134 (2001)Google Scholar
  9. 9.
    Beirlaen M., Straßer C.: Two adaptive logics of norm-propositions. Journal of Applied Logic 11(2), 147–168 (2013)CrossRefGoogle Scholar
  10. 10.
    Beirlaen M., Straßer C.: Nonmonotonic reasoning with normative conflicts in multi-agent deontic logic. Journal of Logic and Computation 24(6), 1179–1207 (2014)CrossRefGoogle Scholar
  11. 11.
    Beirlaen M., Straßer C., Meheus J.: An inconsistency-adaptive deontic logic for normative conflicts. Journal of Philosophical Logic 42(2), 285–315 (2013)CrossRefGoogle Scholar
  12. 12.
    Bochman A.: Explanatory Nonmonotonic Reasoning. OECD Publishing, Paris (2005)CrossRefGoogle Scholar
  13. 13.
    Boella G., van der Torre L.: Institutions with a hierarchy of authorities in distributed dynamic environments. Artifical Intelligence and Law 16, 53–71 (2008)CrossRefGoogle Scholar
  14. 14.
    Boutilier C.: Conditional logics of normality: a modal approach. Artificial Intelligence 68(1), 87–154 (1994)CrossRefGoogle Scholar
  15. 15.
    Brewka, G., Preferred subtheories: an extended logical framework for default reasoning, in Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI’89), 1989, pp. 1043–1048.Google Scholar
  16. 16.
    Crocco, G., and P. Lamarre, On the connection between non-monotonic inference systems and conditional logics, in B. Nebel and E. Sandewall (eds.), Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning, 1992, pp. 565–571.Google Scholar
  17. 17.
    Gabbay, D., Conditional implications and non-monotonic consequence, in G. Crocco, L. Farinhas del Cerro and A. Herzig (eds.), Conditionals: From Philosophy to Computer Science, vol. 5 of Studies in Logic and Computation, Oxford University Press, Oxford, 1995, pp. 337–359.Google Scholar
  18. 18.
    Goble L.: Deontic logic (adapted) for normative conflicts. Logic Journal of IGPL 22(2), 206–235 (2014)CrossRefGoogle Scholar
  19. 19.
    Gonçalves, R., and J. J. Alferes, An embedding of input-output logic in deontic logic programs, in T. Ågotnes, J. Broersen, and D. Elgesem (eds.), Proceedings of the 11th International Conference on Deontic Logic in Computer Science, vol. 7393 of Lecture Notes in Artificial Intelligence, Springer, Berlin, 2012, pp. 61–75.Google Scholar
  20. 20.
    Hansen, J., G. Pigozzi, and L. van der Torre, Ten philosophical problems in deontic logic, in G. Boella, L. van der Torre, and H. Verhagen (eds.), Normative Multi-agent Systems, No. 07122 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.Google Scholar
  21. 21.
    Horty J. F.: Moral dilemmas and nonmonotonic logic. Journal of Philosophical Logic 23(1), 35–65 (1994)CrossRefGoogle Scholar
  22. 22.
    Horty J. F.: Skepticism and floating conclusions. Artificial Intelligence 135, 55–72 (2002)CrossRefGoogle Scholar
  23. 23.
    Horty J. F.: Reasons as Defaults. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  24. 24.
    Kraus S., Lehmann D. J., Magidor M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)CrossRefGoogle Scholar
  25. 25.
    Lehmann D.J., Magidor M.: What does a conditional knowledge base entail?. Artificial Intelligence 55(1), 1–60 (1992)CrossRefGoogle Scholar
  26. 26.
    Lin, F., and Y. Shoham, Epistemic Semantics for Fixed-Points Non-monotonic Logics, Morgan Kaufmann Publishers Inc., Pacific Grove, CA, 1990.Google Scholar
  27. 27.
    Lindström, S., A semantic approach to nonmonotonic reasoning: inference operations and choice, Uppsala Prints and Reprints in Philosophy 10, 1994.Google Scholar
  28. 28.
    Makinson D., Schlechta K.: Floating conclusions and zombie paths: two deep difficulties in the “directly skeptical” approach to defeasible inheritance nets. Artificial Intelligence 48, 199–209 (1991)CrossRefGoogle Scholar
  29. 29.
    Makinson D., van der Torre L.: Input/output logics. Journal of Philosophical Logic 29, 383–408 (2000)CrossRefGoogle Scholar
  30. 30.
    Makinson D., van der Torre L.: Constraints for input/output logics. Journal of Philosophical Logic 30, 155–185 (2001)CrossRefGoogle Scholar
  31. 31.
    Makinson D., van der Torre L.: Permission from an input/output perspective. Journal of Philosophical Logic 32(4), 391–416 (2003)CrossRefGoogle Scholar
  32. 32.
    Makinson, D., and L. van der Torre, What is input/output logic? input/output logic, constraints, permissions, in G. Boella, L. van der Torre, and H. Verhagen (eds.), Normative Multi-agent Systems, No. 07122 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.Google Scholar
  33. 33.
    Meheus, J., M. Beirlaen, and F. Van De Putte, Avoiding deontic explosion by contextually restricting aggregation, in G. Governatori and G. Sartor (eds.), Proceedings of the 10th International Conference on Deontic Logic in Computer Science, vol. 6181 of Lecture Notes in Artificial Intelligence, Springer, 2010, pp. 148–165.Google Scholar
  34. 34.
    Meheus, J., C. Straßer, and P. Verdée, Which style of reasoning to choose in the face of conflicting information? Journal of Logic and Computation, 2013. doi: 10.1093/logcom/ext030.
  35. 35.
    Parent, X., and L. Van Der Torre, Aggregative deontic detachment for normative reasoning, Short paper, to appear in Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, 2014.Google Scholar
  36. 36.
    Parent, X., and L. Van Der Torre, Sing and dance!, in F. Cariani, D. Grossi, J. Meheus and X. Parent (eds.), Deontic Logic and Normative Systems. Springer, Berlin, 2014, pp. 149–165.Google Scholar
  37. 37.
    Pollock, J., Defeasible reasoning, in J. E. Adler and L. J. Rips (eds.), Reasoning. Studies of Human Inference and Its Foundations, Cambridge University Press, Cambridge, 2008, pp. 451–470.Google Scholar
  38. 38.
    Prakken, H., Intuitions and the modelling of defeasible reasoning: some case studies, in S. Benferhat and E. Giunchiglia (eds.), Proceedings of the 9th International Workshop on Non-Monotonic Reasoning, 2002, pp. 91–102.Google Scholar
  39. 39.
    Reiter R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)CrossRefGoogle Scholar
  40. 40.
    Rescher N., Manor R.: On inference from inconsistent premises. Theory and Decision 1, 179–217 (1970)CrossRefGoogle Scholar
  41. 41.
    Stolpe, A., Normative consequence: the problem of keeping it whilst giving it up, in R. van der Meyden and L. van der Torre (eds.), Proceedings of the 9th International Conference on Deontic Logic in Computer Science, vol. 5076 of Lecture Notes in Computer Science, Springer, Berlin, 2008, pp. 174–188.Google Scholar
  42. 42.
    Stolpe, A., Norms and Norm-System Dynamics, PhD Thesis, Department of Philosophy, University of Bergen, Norway, 2008.Google Scholar
  43. 43.
    Stolpe A.: A theory of permission based on the notion of derogation. Journal of Applied Logic 8(1), 97–113 (2010)CrossRefGoogle Scholar
  44. 44.
    Straßer C.: A deontic logic framework allowing for factual detachment. Journal of Applied Logic 9(1), 61–80 (2011)CrossRefGoogle Scholar
  45. 45.
    Straßer C.: Adaptive Logic and Defeasible Reasoning. Applications in Argumentation, Normative Reasoning and Default Reasoning. Springer, Berlin (2014)CrossRefGoogle Scholar
  46. 46.
    Straßer C., Beirlaen M., Meheus J.: Tolerating deontic conflicts by adaptively restricting inheritance. Logique & Analyse 219, 477–506 (2012)Google Scholar
  47. 47.
    Straßer, C., and F. Van De Putte, Proof theories for superpositions of adaptive logics, Logique et Analyse 25(230), 2015Google Scholar
  48. 48.
    Van De Putte F.: Hierarchic adaptive logics. Logic Journal of the IGPL 20, 45–72 (2012)CrossRefGoogle Scholar
  49. 49.
    Van De Putte F., Straßer C.: Extending the standard format of adaptive logics to the prioritized case. Logique et Analyse 55(220), 601–641 (2012)Google Scholar
  50. 50.
    Van De Putte F., Straßer C.: A logic for prioritized normative reasoning. Journal of Logic and Computation 23(3), 563–583 (2013)CrossRefGoogle Scholar
  51. 51.
    Van De Putte F., Verdée P.: The dynamics of relevance: Adaptive belief revision. Synthese 187(1), 1–42 (2012)CrossRefGoogle Scholar
  52. 52.
    Van Der Torre, L., and Y.-H. Tan, Cancelling and overshadowing: two types of defeasibility in defeasible deontic logic, in Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), 1995, pp. 1525–1532.Google Scholar
  53. 53.
    Van Fraassen B.C.: Values and the heart’s command. Journal of Philosophy 70, 5–19 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Christian Straßer
    • 1
    • 2
    Email author
  • Mathieu Beirlaen
    • 1
    • 2
    • 3
  • Frederik Van De Putte
    • 1
    • 2
  1. 1.Centre for Logic and Philosophy of ScienceGhent UniversityGhentBelgium
  2. 2.Institute for Philosophy IIRuhr-University BochumBochumGermany
  3. 3.Instituto de Investigaciones FilosóficasUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations