Studia Logica

, Volume 104, Issue 4, pp 641–678 | Cite as

Checking EMTLK Properties of Timed Interpreted Systems Via Bounded Model Checking

Open Access
Article

Abstract

We investigate a SAT-based bounded model checking (BMC) method for EMTLK (the existential fragment of the metric temporal logic with knowledge) that is interpreted over timed models generated by timed interpreted systems. In particular, we translate the existential model checking problem for EMTLK to the existential model checking problem for a variant of linear temporal logic (called HLTLK), and we provide a SAT-based BMC technique for HLTLK. We evaluated the performance of our BMC by means of a variant of a timed generic pipeline paradigm scenario and a timed train controller system.

Keywords

Bounded Model Checking Timed Interpreted Systems Metric Temporal Logic with Knowledge 

References

  1. 1.
    Alur R., Henzinger T. A.: Real-time logics: complexity and expressiveness. Information and Computation 104, 390–401 (1993)Google Scholar
  2. 2.
    Alur R., Feder T., Henzinger T.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)CrossRefGoogle Scholar
  3. 3.
    Biere A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 75–97 (2008)Google Scholar
  4. 4.
    Biere, A., K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan, Linear encodings of bounded ltl model checking, Logical Methods in Computer Science 2(5:5):1–64, 2006.Google Scholar
  5. 5.
    Blackburn, P., M. de Rijke, and Y. Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 2001.Google Scholar
  6. 6.
    Cabodi, G., P. Camurati, and S. Quer, Can BDDs compete with SAT solvers on bounded model checking?, in Proceedings of the 39th Annual Design Automation Conference (DAC’2002), ACM, New York, 2002, pp. 117–122.Google Scholar
  7. 7.
    Clarke E., Biere A., Raimi R., Zhu Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefGoogle Scholar
  8. 8.
    Emerson, E. A., Temporal and modal logic, in J. van Leeuwen, (ed.), Handbook of Theoretical Computer Science, vol. B, Chap. 16, Elsevier Science Publishers, 1990, pp. 996–1071.Google Scholar
  9. 9.
    Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, 1995.Google Scholar
  10. 10.
    Furia, C. A., and P. Spoletini, Tomorrow and all our yesterdays: MTL satisfiability over the integers, in Proceedings of the Theoretical Aspects of Computing (ICTAC’2008), vol. 5160 of LNCS. Springer-Verlag, New York, 2008, pp. 253–264.Google Scholar
  11. 11.
    Gammie, P., and R. van der Meyden, MCK: Model checking the logic of knowledge, in Proceedings of 16th International Conference on Computer Aided Verification (CAV’04), vol. 3114 of LNCS, Springer-Verlag, New York, 2004, pp. 479–483.Google Scholar
  12. 12.
    Huang, X., and R. van der Meyden, The complexity of epistemic model checking: Clock semantics and branching time, in Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2010, pp. 549–554.Google Scholar
  13. 13.
    Levesque, H., A logic of implicit and explicit belief, in Proceedings of the 6th National Conference of the AAAI, Morgan Kaufman, Palo Alto, 1984, pp. 198–202.Google Scholar
  14. 14.
    Lomuscio A., Sergot M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)CrossRefGoogle Scholar
  15. 15.
    Lomuscio, A., W. Penczek, and B. Woźna, Bounded model checking for knowledge and real time, Artificial Intelligence 171:1011–1038, 2007.Google Scholar
  16. 16.
    Lomuscio, A., H. Qu, and F. Raimondi, Mcmas: A model checker for the verification of multi-agent systems, in Proceedings of the 21st International Conference on Computer Aided Verification (CAV 2009), vol. 5643 of LNCS, Springer-Verlag, New York, 2009, pp. 682–688.Google Scholar
  17. 17.
    Mȩski, A., W. Penczek, M. Szreter, B. Woźna-Szcześniak, and A. Zbrzezny, BDD- versus SAT-based bounded model checking for the existential fragment of linear temporal logic with knowledge: algorithms and their performance, Autonomous Agents and Multi-Agent Systems 28(4):558–604, 2014.Google Scholar
  18. 18.
    Peled, D., All from one, one for all: On model checking using representatives, in Proceedings of the 5th International Conference on Computer Aided Verification (CAV’93), vol. 697 of LNCS, Springer-Verlag, New York, 1993, pp. 409–423.Google Scholar
  19. 19.
    Penczek, W., and A. Lomuscio, Verifying epistemic properties of multi-agent systems via bounded model checking, Fundamenta Informaticae 55(2):167–185, 2003.Google Scholar
  20. 20.
    Tripakis, S., Minimization of timed systems. http://verimag.imag.fr/~tripakis/dea.ps.gz, 1998.
  21. 21.
    Wooldridge M.: An introduction to multi-agent systems. Wiley, Chichester (2002)Google Scholar
  22. 22.
    Woźna-Szcześniak, B., and A. Zbrzezny, A translation of the existential model checking problem from MITL to HLTL, Fundamenta Informaticae 122(4):401–420, 2013.Google Scholar
  23. 23.
    Woźna-Szcześniak, B., and A. Zbrzezny, Checking MTL properties of discrete timed automata via bounded model checking, Fundamenta Informaticae 135(4):553–568, 2014.Google Scholar
  24. 24.
    Zbrzezny A.: A new translation from ECTL* to SAT. Fundamenta Informaticae 120(3–4), 377–397 (2012)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceJan Długosz UniversityCzȩstochowaPoland

Personalised recommendations