Advertisement

Studia Logica

, Volume 101, Issue 6, pp 1237–1262 | Cite as

Computability Issues for Adaptive Logics in Multi-Consequence Standard Format

  • Sergei P. OdintsovEmail author
  • Stanislav O. Speranski
Article

Abstract

In a rather general setting, we prove a number of basic theorems concerning computational complexity of derivability in adaptive logics. For that setting, the so-called standard format of adaptive logics is suitably adopted, and the corresponding completeness results are established in a very uniform way.

Keywords

Adaptive logics Dynamic reasoning Standard format Reliability strategy Minimal abnormality strategy Computational complexity Expressiveness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batens, D., Adaptive Logics and Dynamic Proofs, manuscript, available at http://logica.ugent.be/adlog/book.html
  2. 2.
    Batens, D., A general characterization of adaptive logics, Logique et Analyse 173-174-175:45–68, 2001.Google Scholar
  3. 3.
    Batens, D., Inconsistency-adaptive logics, in E. Orlowska (ed.), Logic at Work. Essays dedicated to the memory of Helena Rasiowa, Physica-Verlag, Heidelberg, 1999, pp. 445–472.Google Scholar
  4. 4.
    Batens D.: A universal logic approach to adaptive logics. Logica Universalis 1(1), 221–242 (2007)CrossRefGoogle Scholar
  5. 5.
    Chagrov, A., and M. Zakharyaschev, Modal Logic, Oxford University Press, 1997.Google Scholar
  6. 6.
    Cooper S.B.: Computability Theory. CRC Press, New York (2003)Google Scholar
  7. 7.
    Horsten L., Welch P.: The undecidability of propositional adaptive logic. Synthese 158(1), 41–60 (2007)CrossRefGoogle Scholar
  8. 8.
    Odintsov S.P., Speranski S.O.: On algorithmic properties of propositional inconsistency-adaptive logics. Logic and Logical Philosophy 21(3), 209–228 (2012)Google Scholar
  9. 9.
    Hájek, P., and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic, Springer, Berlin, 1998.Google Scholar
  10. 10.
    Rogers H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)Google Scholar
  11. 11.
    Van De Putte, F., and Ch. Strasser, Three formats of prioritized adaptive logics: a comparative study, Logic Journal of the IGPL, 2012, doi: 10.1093/jigpal/jzs004.
  12. 12.
    VanDe Putte F., Strasser Ch.: Extending the standard format of adaptive logics to the prioritized case. Logique et Analyse 55(220), 601–641 (2012)Google Scholar
  13. 13.
    Verdée P.: Adaptive logics using the minimal abnormality strategy are \({\Pi^{1}_{1}}\) -complex. Synthese 167(1), 93–104 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sergei P. Odintsov
    • 1
    • 2
    Email author
  • Stanislav O. Speranski
    • 1
    • 2
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations