Studia Logica

, Volume 102, Issue 4, pp 849–866 | Cite as

Reasoning About Uncertain Conditionals

  • Niki Pfeifer


There is a long tradition in formal epistemology and in the psychology of reasoning to investigate indicative conditionals. In psychology, the propositional calculus was taken for granted to be the normative standard of reference. Experimental tasks, evaluation of the participants’ responses and psychological model building, were inspired by the semantics of the material conditional. Recent empirical work on indicative conditionals focuses on uncertainty. Consequently, the normative standard of reference has changed. I argue why neither logic nor standard probability theory provide appropriate rationality norms for uncertain conditionals. I advocate coherence based probability logic as an appropriate framework for investigating uncertain conditionals. Detailed proofs of the probabilistic non-informativeness of a paradox of the material conditional illustrate the approach from a formal point of view. I survey selected data on human reasoning about uncertain conditionals which additionally support the plausibility of the approach from an empirical point of view.


Coherence Conditionals Formal epistemology Paradoxes of the material conditional Probability logic Psychology of reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams E.W.: A Primer of Probability Logic. CSLI, Stanford (1998)Google Scholar
  2. 2.
    Baratgin, J., D. E. Over, and G. Politzer, New paradigm psychology of conditionals and general de Finetti tables, Mind and Language (in press).Google Scholar
  3. 3.
    Baratgin, J., D. E. Over, and G. Politzer, Uncertainty and the de Finetti tables, Thinking & Reasoning doi: 10.1080/13546783.2013.809018.
  4. 4.
    Biazzo V., Gilio A.: A generalization of the fundamental theorem of de Finetti for imprecise conditional probability assessments. International Journal of Approximate Reasoning 24(2–3), 251–272 (2000)CrossRefGoogle Scholar
  5. 5.
    Bonnefon J.-F., Politzer G.: Pragmatics, mental models and one paradox of the material conditional. Mind & Language 26(2), 141–155 (2011)CrossRefGoogle Scholar
  6. 6.
    Braine, M. D. S., and D. P. O’Brien (eds.), Mental Logic, Erlbaum, Mahwah, 1998.Google Scholar
  7. 7.
    Byrne R.M.J.: Suppressing valid inferences with conditionals. Cognition 31, 61–83 (1989)CrossRefGoogle Scholar
  8. 8.
    Coletti G., Scozzafava R.: Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  9. 9.
    Coletti, G., R. Scozzafava, and B. Vantaggi, Probabilistic reasoning as a general unifying tool, in S. Benferhat and P. Besnard (eds.), Lecture Notes LNAI, Vol. 2143 of ECSQARU, Springer, New York, 2001, pp. 120–131.Google Scholar
  10. 10.
    de Finetti, B., Theory of probability, Vols. 1, 2, John Wiley & Sons, Chichester, 1974. Original work published 1970.Google Scholar
  11. 11.
    de Finetti, B., Foresight: its logical laws, its subjective sources (1937), in H. Jr. Kyburg and H. E. Smokler (eds.), Studies in Subjective Probability, Robert E. Krieger Publishing Company, Huntington, New York, 1980, pp. 55–118.Google Scholar
  12. 12.
    Douven I., Meijs W.: Measuring coherence. Synthese 156(3), 405–425 (2007)CrossRefGoogle Scholar
  13. 13.
    Evans, J. St B. T., Interpretation and matching bias in a reasoning task, Quarterly Journal of Experimental Psychology 24:193–199, 1972.Google Scholar
  14. 14.
    Evans, J. St B. T., Logic and human reasoning: an assessment of the deduction paradigm, Psychological Bulletin 128:978–996, 2002.Google Scholar
  15. 15.
    Evans, J. St B. T., S. J. Handley, and D. E. Over, Conditionals and conditional probability, Journal of Experimental Psychology: Learning, Memory, and Cognition 29(2):321–355, 2003.Google Scholar
  16. 16.
    Galavotti, M. C. (ed.), Bruno de Finetti. Radical probabilist, Texts in Philosophy 8, College Publications, London, 2008.Google Scholar
  17. 17.
    Gilio A.: Criterio di penalizzazione e condizioni di coerenza nella valutazione soggettiva della probabilità à. Bollettino dell’Unione Matematica Italiana 4-B, 645–660 (1990)Google Scholar
  18. 18.
    Gilio A.:: Probabilistic reasoning under coherence in System P. Annals of Mathematics and Artificial Intelligence 34, 5–34 (2002)CrossRefGoogle Scholar
  19. 19.
    Gilio A., Over D.E.: The psychology of inferring conditionals from disjunctions: a probabilistic study. Journal of Mathematical Psychology 56, 118–131 (2012)CrossRefGoogle Scholar
  20. 20.
    Gilio A., Sanfilippo G.: Quasi conjunction, quasi disjunction, t-norms and t-conorms: probabilistic aspects. Information Sciences. 245, 146–167 (2013). doi: 10.1016/j.ins.2013.03.019 CrossRefGoogle Scholar
  21. 21.
    Gilio, A., and G. Sanfilippo, Conditional random quantities and compounds of conditionals, Studia Logica 102, 2014.Google Scholar
  22. 22.
    Haenni R., Romeijn J.-W., Wheeler G., Williamson J.: Probabilistic Logics and Probabilistic Networks. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  23. 23.
    Hailperin, T., Sentential Probability Logic. Origins, Development, Current Status, and Technical Applications, Lehigh University Press, Bethlehem, 1996.Google Scholar
  24. 24.
    Hailperin T.: Logic with a Probability Semantics. Including a Probability Semantics to Some Philosophical Problems. Lehigh University Press, Bethlehem (2011)Google Scholar
  25. 25.
    Harris A.J.L., Hahn U.: Bayesian rationality in evaluating multiple testimonies: incorporating the role of coherence. Journal of Experimental Psychology: Learning, Memory, and Cognition 35, 1366–1373 (2009)Google Scholar
  26. 26.
    Hawthorne, J., A primer on rational consequence relations, Popper functions, and their ranked structures, Studia Logica 102, 2014.Google Scholar
  27. 27.
    Johnson-Laird P.N., Mental Models: Towards a Cognitive Science of Language, Inference and Consciousness. Cambridge University Press, Cambridge (1983)Google Scholar
  28. 28.
    Johnson-Laird P.N., Byrne R.M.J.: Conditionals: a theory of meaning, pragmatics, and inference. Psychological Review 109(4), 646–678 (2002)CrossRefGoogle Scholar
  29. 29.
    Johnson-Laird P.N., Tagart J.: How implication is understood. The American Journal of Psychology 82(3), 367–373 (1969)CrossRefGoogle Scholar
  30. 30.
    Klauer K.C., Beller S., Hütter M.: Conditional reasoning in context: a dual-source model of probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition 36, 298–323 (2010)Google Scholar
  31. 31.
    Kolmogoroff A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, Heidelberg (1933)CrossRefGoogle Scholar
  32. 32.
    Lad F.: Operational Subjective Statistical Methods: A Mathematical, Philosophical, and Historical Introduction. Wiley, New York (1996)Google Scholar
  33. 33.
    Lewis C.I.: IV.—Implication and the Algebra of Logic. Mind 21(84), 522–531 (1912)CrossRefGoogle Scholar
  34. 34.
    Oaksford M., Chater N., Larkin J.: Probabilities and polarity biases in conditional inference.. Journal of Experimental Psychology: Learning, Memory, and Cognition 26, 883–899 (2000)Google Scholar
  35. 35.
    Oberauer K., Wilhelm O.: The meaning(s) of conditionals: conditional probabilities, mental models and personal utilities. Journal of Experimental Psychology: Learning, Memory, and Cognition 29, 680–693 (2003)Google Scholar
  36. 36.
    Over, D. E., J. St B. T. Evans, and S. Elqayam, Conditionals and non-constructive reasoning, in M. Oaksford and N. Chater (eds.), Cognition and Conditionals: Probability and Logic in Human Reasoning, Oxford University Press, Oxford, 2010, pp. 135–151.Google Scholar
  37. 37.
    Pfeifer N.: Systematic rationality norms provide research roadmaps and clarity. Commentary on Elqayam & Evans: subtracting “ought” from “is”: descriptivism versus normativism in the study of human thinking. Behavioral and Brain Sciences 34, 263–264 (2011)CrossRefGoogle Scholar
  38. 38.
    Pfeifer N.: Experiments on Aristotle’s thesis: towards an experimental philosophy of conditionals. The Monist 95(2), 223–240 (2012)CrossRefGoogle Scholar
  39. 39.
    Pfeifer, N., The new psychology of reasoning: a mental probability logical perspective, Thinking & Reasoning (in press).Google Scholar
  40. 40.
    Pfeifer N., Kleiter G.D.: Coherence and nonmonotonicity in human reasoning. Synthese 146(1–2), 93–109 (2005)CrossRefGoogle Scholar
  41. 41.
    Pfeifer N., Kleiter G.D.: Inference in conditional probability logic. Kybernetika 42, 391–404 (2006)Google Scholar
  42. 42.
    Pfeifer N., Kleiter G.D.: Framing human inference by coherence based probability logic. Journal of Applied Logic 7(2), 206–217 (2009)CrossRefGoogle Scholar
  43. 43.
    Pfeifer, N., and G. D. Kleiter, The conditional in mental probability logic, in M. Oaksford and N. Chater (eds.), Cognition and Conditionals: Probability and Logic in Human Thought, Oxford University Press, Oxford, 2010, pp. 153–173.Google Scholar
  44. 44.
    Pfeifer, N., and G. D. Kleiter, Uncertain deductive reasoning, in K. Manktelow, D. E. Over, and S. Elqayam (eds.), The Science of Reason: A Festschrift for Jonathan St. B.T. Evans, Psychology Press, Hove, 2011, pp. 145–166.Google Scholar
  45. 45.
    Politzer G., Bourmaud G.: Deductive reasoning from uncertain conditionals. British Journal of Psychology 93, 345–381 (2002)CrossRefGoogle Scholar
  46. 46.
    Politzer G., Over D.E., Baratgin J.: Betting on conditionals. Thinking & Reasoning 16(3), 172–197 (2010)CrossRefGoogle Scholar
  47. 47.
    Rips L.J.: The Psychology of Proof: Deductive Reasoning in Human Thinking. MIT Press, Cambridge (1994)Google Scholar
  48. 48.
    Stenning K., van Lambalgen M.: Semantic interpretation as computation in nonmonotonic logic: the real meaning of the suppression task. Cognitive Science 29, 919–960 (2005)CrossRefGoogle Scholar
  49. 49.
    Walley P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)CrossRefGoogle Scholar
  50. 50.
    Wason, P. C., Reasoning, in B. M. Foss (ed.), New Horizons in Psychology I, Penguin, Harmandsworth, 1966, pp. 106–137.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLMU MunichMunichGermany

Personalised recommendations