Advertisement

Studia Logica

, Volume 102, Issue 4, pp 891–911 | Cite as

Completeness and Correspondence in Chellas–Segerberg Semantics

  • Matthias Unterhuber
  • Gerhard Schurz
Article

Abstract

We investigate a lattice of conditional logics described by a Kripke type semantics, which was suggested by Chellas and Segerberg – Chellas–Segerberg (CS) semantics – plus 30 further principles. We (i) present a non-trivial frame-based completeness result, (ii) a translation procedure which gives one corresponding trivial frame conditions for arbitrary formula schemata, and (iii) non-trivial frame conditions in CS semantics which correspond to the 30 principles.

Keywords

Chellas–Segerberg Semantics Standard Segerberg Frame Completeness Correspondence Non-trivial Frame Condition Conditional Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams E. W.: The logic of conditionals. Inquiry 8, 166–197 (1965)CrossRefGoogle Scholar
  2. 2.
    Adams E. W.: On the logic of high probability. Journal of Philosophical Logic 15, 255–279 (1986)CrossRefGoogle Scholar
  3. 3.
    Arló-Costa H.: Bayesian epistemology and epistemic conditionals.On the status of the export–import laws. The Journal of Philosophy 98, 555–593 (2001)CrossRefGoogle Scholar
  4. 4.
    Blackburn, P., M. de Rijke., and Y. Venema, Modal logic, Cambridge University Press, Cambridge, 2001.Google Scholar
  5. 5.
    Chellas B. F.: Basic conditional logic. Journal of Philosophical Logic 4, 133–153 (1975)CrossRefGoogle Scholar
  6. 6.
    Fine, K., and G. Schurz, Transfer theorems for multimodal logics, in B. J. Copeland (ed.), Logic and reality. Essays on the legacy of Arthur Prior, Clarendon Press, Oxford, 1996, pp. 169–213.Google Scholar
  7. 7.
    Gabbay, D. M., A. Kurucz, F. Wolter., and M. Zakharyaschev, Many-dimensional modal logics. Theory and applications, Elsevier, Amsterdam, 2003.Google Scholar
  8. 8.
    Hawthorne, J., A primer on rational consequence relations, Popper functions, and their ranked structures, Studia Logica 102, 2014, this issue.Google Scholar
  9. 9.
    Hughes, G. E., and M. J. Cresswell, A companion to modal logic, Methuen, London, 1984.Google Scholar
  10. 10.
    Kraus S., Lehmann D., Magidor M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)CrossRefGoogle Scholar
  11. 11.
    Leahy, B., E. Rafetseder., and J. Perner, Basic conditional reasoning: how children mimic counterfactual reasoning, Studia Logica 102, 2014, this issue.Google Scholar
  12. 12.
    Lehmann, D., and M. Magidor, What does a conditional knowledge base entail?, Artificial Intelligence 55:1–60, 1992.Google Scholar
  13. 13.
    Lewis, D., Counterfactuals, Blackwell, Oxford, 1973.Google Scholar
  14. 14.
    McGee V.: Conditional probabilities and compounds of conditionals. The Philosophical Review 98, 485–541 (1989)CrossRefGoogle Scholar
  15. 15.
    Nute, D., and C. B. Cross, Conditional logic, in D. M. Gabbay, and F. Guenthner (eds.), Handbook of philosophical logic, vol. 4, 2nd ed., Kluwer, Dordrecht, 2001, pp. 1–98.Google Scholar
  16. 16.
    Pfeifer N., Kleiter G. D.: Coherence and nonmonotonicity in human reasoning. Synthese 146, 93–109 (2005)CrossRefGoogle Scholar
  17. 17.
    Priest, G., An Introduction to non-classical logic, 2nd ed., Cambridge University Press, Cambridge, 2008.Google Scholar
  18. 18.
    Schurz G.: Probabilistic semantics for Delgrande’s conditional logic and a counterexample to his default logic. Artificial Intelligence 102, 81–95 (1998)CrossRefGoogle Scholar
  19. 19.
    Schurz G.: Non-monotonic reasoning from an evolution-theoretic perspective. Ontic, logical and cognitive foundations. Synthese 146, 37–51 (2005)CrossRefGoogle Scholar
  20. 20.
    Schurz G., Thorn P. D.: Reward versus risk in uncertain inference. Theorems and simulations. The Review of Symbolic Logic 5, 574–612 (2012)CrossRefGoogle Scholar
  21. 21.
    Segerberg K.: Notes on conditional logic. Studia Logica 48, 157–168 (1989)CrossRefGoogle Scholar
  22. 22.
    Stalnaker, R. C., A theory of conditionals, in N. Rescher (ed.), Studies in Logical Theory, Basil Blackwell, Oxford, 1968, pp. 98–112.Google Scholar
  23. 23.
    Thorn, P. D., and G. Schurz, Logico-probabilistic inference in an indifferent environment, Studia Logica 102, 2014, this issue.Google Scholar
  24. 24.
    Unterhuber, M., Possible worlds semantics for indicative and counterfactual conditionals? A formal-philosophical inquiry into Chellas–Segerberg semantics, Ontos Verlag (Logos Series), Frankfurt am Main, 2013.Google Scholar
  25. 25.
    van Benthem, J., Correspondence theory, in D. M. Gabbay, and F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 3, 2nd ed., Kluwer, Dordrecht, 2001, pp. 325–408.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Duesseldorf Center for Logic and Philosophy of Science, Department of PhilosophyUniversity of DuesseldorfDuesseldorfGermany

Personalised recommendations