Studia Logica

, Volume 101, Issue 4, pp 783–825 | Cite as

A Coalgebraic Perspective on Logical Interpretations

  • M. A. MartinsEmail author
  • A. Madeira
  • L. S. Barbosa


In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new research avenue in program refinement, (conceptual) tools are needed to reason about them. In this line, the paper’s main contribution is a study of the correspondence between logical interpretations and morphisms of a particular kind of coalgebras. This opens way to the use of coalgebraic constructions, such as simulation and bisimulation, in the study of interpretations between (abstract) logics.


Abstract logic Interpretation Coalgebra Program refinement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., and L. Cardelli, A Theory of Objects. Springer-Verlag, 1996.Google Scholar
  2. 2.
    Adamek J.: An introduction to coalgebra. Theory and Applications of Categories 14(8), 157–199 (2005)Google Scholar
  3. 3.
    Barbosa, L. S., J. N. Oliveira, and A. M. Silva, Calculating invariants as coreflexive bisimulations. In J. Meseguer and G. Rosu, (eds.), Algebraic Methodology and Software Technology, 12th International Conference, AMAST 2008, Urbana, IL, USA, July 28-31, 2008, Proceedings Springer Lect. Notes Comp. Sci. (5140), 2008, pp. 83–99.Google Scholar
  4. 4.
    Batory D., J. N. Sarvela, A. Rauschmayer: Scaling step-wise refinement. IEEE Trans. in Sofware Engineering 30(6), 355–371 (2004)CrossRefGoogle Scholar
  5. 5.
    Bird R., and O. Moor, The Algebra of Programming. Series in Computer Science. Prentice-Hall International, 1997.Google Scholar
  6. 6.
    Blok, W., and D. Pigozzi, Algebraizable logics. Memoirs of the American Mathematical Society (396). Amer. Math. Soc., Providence, 1989.Google Scholar
  7. 7.
    Blok, W., and D. Pigozzi, Abstract algebraic logic and the deduction theorem, 2001. Available from
  8. 8.
    Blok W., J. Rebagliato: Algebraic semantics for deductive systems. Studia Logica 74(1-2), 153–180 (2003)CrossRefGoogle Scholar
  9. 9.
    Caleiro, C., and R. Gonçalves, Equipollent logical systems. In Logica Universalis, Birkhäuser, Basel, 2005, pp. 99–111.Google Scholar
  10. 10.
    Carnielli W. A., M.E. Coniglio, I. M.L. D’Ottaviano: New dimensions on translations between logics. Logica Universalis 3(1), 1–18 (2009)CrossRefGoogle Scholar
  11. 11.
    Czelakowski, J., Protoalgebraic Logics. Trends in logic, Studia Logica Library, Kluwer Academic Publishers, 2001.Google Scholar
  12. 12.
    Czelakowski, J., and D. Pigozzi, Amalgamation and interpolation in abstract algebraic logic. In X. Caicedo and C. H. Montenegro, (eds.), Models, Algebras, and Proofs, Lecture Notes in Pure and Applied Mathematics (vol. 203), 1998, pp. 187–265.Google Scholar
  13. 13.
    Descalço, L., A. Madeira, and M. A. Martins, Applying abstract algebraic logic to classic automata theory: an exercise. In F. Ferreira, Guerra H., and E. Mayordomo, (eds.), Programs, Proofs and Processes; Computability in Europe Cie 2010, 2010, pp. 146–157.Google Scholar
  14. 14.
    Feitosa, H. A., Traduções Conservativas. PhD thesis, Universidade Federal de Campinas, Instituto de Filosofia e Ciências Humanas, 1997.Google Scholar
  15. 15.
    Feitosa H. A., I. M. L. D’Ottaviano: Conservative translations. Ann. Pure Appl. Logic 108(1-3), 205–227 (2001)CrossRefGoogle Scholar
  16. 16.
    Font J. M., and R. Jansana, A general Algebraic Semantics for Sentential Logics, 2nd edition, volume 7. Lecture Notes in Logic, 2009.Google Scholar
  17. 17.
    Freyd, P. J., and A. Ščedrov, Categories, Allegories, volume 39 of Mathematical Library. North-Holland, 1990.Google Scholar
  18. 18.
    Glivenko V.: Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences 15(5), 183–188 (1929)Google Scholar
  19. 19.
    Gödel, K., An interpretation of the intuitionistic proposicional calculus (1933). In S. Feferman et alii, (eds.), Collected works of Kurt Gödel (vol. I), Oxford: Oxford University Press, 1986, pp. 301–303.Google Scholar
  20. 20.
    Hermida C., B. Jacobs: Structural induction and coinduction in a fibrational setting. Information and Computation 145, 105–121 (1998)CrossRefGoogle Scholar
  21. 21.
    Kock A.: Strong functors and monoidal monads. Archiv für Mathematik 23, 113–120 (1972)CrossRefGoogle Scholar
  22. 22.
    Kolmogorov, A. N., On the principle of excluded middle (1925). In J. Hei-Jenoort, (ed.), From Frege to Gddotödel: a source book in mathematical logic 1879-1931, Cambridge: Harvard University Press, 1977, pp. 414–437.Google Scholar
  23. 23.
    Lucanu, D., E. Goriac, G. Caltais, and G. Rosu, Circ: A behavioral verification tool based on circular coinduction. In Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings, Springer Lect. Notes Comp. Sci. (5728), 2009, pp. 433–442.Google Scholar
  24. 24.
    Maddux R. D.: The origin of relation algebras in the development and axiomatization of the calculus of relations. Studia Logica 50(3-4), 42–455 (1991)CrossRefGoogle Scholar
  25. 25.
    Martin C.E., S.A. Curtis, I. Rewitzky: Modelling angelic and demonic nondeterminism with multirelations. Sci. Comput. Program 65(2), 140–158 (2007)CrossRefGoogle Scholar
  26. 26.
    Martins M. A.: Behavioral institutions and refinements in generalized hidden logics. Journal of Universal Computer Science 12(8), 1020–1049 (2006)Google Scholar
  27. 27.
    Martins M.A.: Closure properties for the class of behavioral models. Theor. Comput. Sci. 379(1-2), 53–83 (2007)CrossRefGoogle Scholar
  28. 28.
    Martins M.A.: On the behavioral equivalence between k-data structures. The Computer Journal 51(2), 181–191 (2008)CrossRefGoogle Scholar
  29. 29.
    Martins, M. A., A. Madeira, and L. S. Barbosa, Refinement by interpretation. In Dang Van Hung and P. Krishnan, (eds.), 7th IEEE International Conference on Software Engineering and Formal Methods (SEFM’09), IEEE Computer Society Press, 2009, pp. 250–259.Google Scholar
  30. 30.
    Martins, M. A., A. Madeira, and L. S. Barbosa, Refinement by interpretation in a general setting. In J. Derrick, E. Boiten, and S. Reeves, (eds.), Proc. Refinement Workshop 2009, Electr. Notes Theor. Comput. Sci. (256), Elsevier, 2009, pp. 105–121.Google Scholar
  31. 31.
    Martins M.A., D. Pigozzi: Behavioural reasoning for conditional equations. Math. Struct. Comput. Sci. 17(5), 1075–1113 (2007)CrossRefGoogle Scholar
  32. 32.
    Meinke, K., and J. V. Tucker, Universal algebra. In Handbook of logic in computer science, Vol. 1, volume 1 of Handb. Log. Comput. Sci., Oxford Univ. Press, New York, 1992, pp. 189–411.Google Scholar
  33. 33.
    Meng , Sun , L.S. Barbosa: Components as coalgebras: The refinement dimension. Theor. Comp. Sci. 351, 276–294 (2005)CrossRefGoogle Scholar
  34. 34.
    Michel Bidoit, M., and R. Hennicker, Proving behavioral refinements of colspecifications. In Essays Dedicated to Joseph A. Goguen, 2006, pp. 333–354.Google Scholar
  35. 35.
    Mossakowski T., R. Diaconescu, A. Tarlecki: What is a logic translation?. Logica Universalis 3(1), 95–124 (2009)CrossRefGoogle Scholar
  36. 36.
    Mossakowski T., A.Haxthausen D. Sannella, A. Tarlecki: CASL: The common algebraic specification language: Semantics and proof theory. Computing and Informatics 22, 285–321 (2003)Google Scholar
  37. 37.
    Palmigiano, A., Abstract logics as dialgebras. Electr. Notes Theor. Comput. Sci. 65(1), 2002.Google Scholar
  38. 38.
    Park, D., Concurrency and automata on infinite sequences. Springer Lect. Notes Comp. Sci. (104), 1981, pp. 561–572.Google Scholar
  39. 39.
    Poll, E., and J. Zwanenburg, From algebras and coalgebras to dialgebras. In H. Reichel, (ed.), Coalgebraic Methods in Computer Science (CMCS’2001), number 44 in ENTCS. Elsevier, 2001.Google Scholar
  40. 40.
    Pratt, V., Origins of the calculus of binary relations. In Proc. IEEE Symp. on Logic in Computer Science, Santa Cruz, CA,USAIEEE, 1992, pp. 248–254.Google Scholar
  41. 41.
    Prawitz, D., and P.-E. Malmnäs, A survey of some connections between classical, intuitionistic and minimal logic. In Contributions to Mathematical Logic: Proc. Logic Colloq. (Hannover 1966), North-Holland, 1968, pp. 215–229.Google Scholar
  42. 42.
    Robinson E. P.: Variations on algebra: monadicity and generalisations of equational theories. Formal Aspects of Computing 13, 308–326 (2002)CrossRefGoogle Scholar
  43. 43.
    Rutten, J., Universal coalgebra: A theory of systems. Theoretical Computer Science 249(1):3–80, 2000. (Revised version of CWI Techn. Rep. CS-R9652, 1996).Google Scholar
  44. 44.
    Sannella D., A. Tarlecki: Towards Formal Development of Programs from Algebraic Specifications: Implementations Revisited. Acta Informatica 25(3), 233–281 (1988)CrossRefGoogle Scholar
  45. 45.
    Sannella D., A. Tarlecki: Essential concepts of algebraic specification and program development. Formal Aspects of Computing 9(3), 229–269 (1997)CrossRefGoogle Scholar
  46. 46.
    Da Silva, J., I. D’Ottaviano, and A. M. Sette, Translations between logics. In Models, algebras, and proofs: Selected papers of the X Latin American Symposium on Mathematical Logic, (Bogotá, 1995), Lect. Notes Pure Appl. Math. (203), 1968, pp. 435–448.Google Scholar
  47. 47.
    Tarlecki, A., Abstract specification theory: An overwiew. In M. Broy, and M. Pizka, (eds.), Models, Algebras, and Logics of Engineering Software, NATO Science Series, Computer and Systems Sciences, VOL 191, IOS Press, 2003, pp. 43–79.Google Scholar
  48. 48.
    Tarski A.: On the calculus of relations. The Journal of Symbolic Logic 6(3), 73–89 (1941)CrossRefGoogle Scholar
  49. 49.
    Wirsing, M., Algebraic specification. In J. van Leeuwen, (ed.), Handbook of Theoretical Computer Science (volume B), Elsevier - MIT Press, 1990, pp. 673–788.Google Scholar
  50. 50.
    Wójcicki, R., Theory of logical caculi. Basic theory of consequence operations. Synthese Library, 199. Kluwer Academic Publishers., 1988.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.CIDMA, Dep. MathematicsUniversidade de AveiroAveiroPortugal
  2. 2.Critical Software, MAP-i Doctoral ProgrammeAveiroPortugal
  3. 3.HASLab \ INESC TECUniversidade do MinhoBragaPortugal

Personalised recommendations