Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bilattices with Implications

  • 155 Accesses

  • 6 Citations

Abstract

In a previous work we studied, from the perspective of Abstract Algebraic Logic, the implicationless fragment of a logic introduced by O. Arieli and A. Avron using a class of bilattice-based logical matrices called logical bilattices. Here we complete this study by considering the Arieli-Avron logic in the full language, obtained by adding two implication connectives to the standard bilattice language. We prove that this logic is algebraizable and investigate its algebraic models, which turn out to be distributive bilattices with additional implication operations. We axiomatize and state several results on these new classes of algebras, in particular representation theorems analogue to the well-known one for interlaced bilattices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arieli, O., and A. Avron, Logical bilattices and inconsistent data, in LICS, Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, 4-7 July 1994, Paris, France, 1994, pp. 468–476.

  2. 2.

    Arieli O., Avron A.: Reasoning with logical bilattices, Journal of Logic. Language and Information 5(1), 25–63 (1996)

  3. 3.

    Arieli O., Avron A.: The value of the four values. Artificial Intelligence 102(1), 97–141 (1998)

  4. 4.

    Avron A.: A note on the structure of bilattices. Mathematical Structures in Computer Science 5(3), 431–438 (1995)

  5. 5.

    Avron A.: The structure of interlaced bilattices. Mathematical Structures in Computer Science 6(3), 287–299 (1996)

  6. 6.

    Belnap, N. D., How a computer should think, in G. Ryle, (ed.), Contemporary Aspects of Philosophy, Oriel Press, Boston, 1976, pp. 30–56.

  7. 7.

    Belnap, Jr., N. D., A useful four-valued logic, in J. M. Dunn, and G. Epstein, (eds.), Modern uses of multiple-valued logic (Fifth Internat. Sympos., Indiana Univ., Bloomington, Ind., 1975), Reidel, Dordrecht, 1977, pp. 5–37. Episteme, Vol. 2.

  8. 8.

    Blok, W. J., and D. Pigozzi, Algebraizable logics, vol. 396 of Mem. Amer. Math. Soc., A.M.S., Providence, 1989.

  9. 9.

    Bou F., Jansana R., Rivieccio U.: Varieties of interlaced bilattices. Algebra Universalis 66(1), 115–141 (2011)

  10. 10.

    Bou F., Rivieccio U.: The logic of distributive bilattices. Logic Journal of the I.G.P.L 19(1), 183–216 (2011)

  11. 11.

    Burris, S., and H. P. Sankappanavar, A course in Universal Algebra, the millennium edn., 2000.

  12. 12.

    Cignoli R., Torrens A.: Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation 2(x 2) = (2x)2. Studia Logica 83(1–3), 157–181 (2006)

  13. 13.

    Conrad, P. F., and M. R. Darnel, Generalized Boolean algebras in lattice-ordered groups, Order 14 (4):295–319, 1997/98.

  14. 14.

    Curry, H. B., Foundations of mathematical logic, Dover Publications Inc., New York, 1977. Corrected reprinting.

  15. 15.

    Czelakowski, J., Protoalgebraic logics, vol. 10 of Trends in Logic—Studia Logica Library, Kluwer Academic Publishers, Dordrecht, 2001.

  16. 16.

    Davey B.A.: Dualities for equational classes of Brouwerian algebras and Heyting algebras. Transactions of the Americal Mathematical Society 221(1), 119–146 (1976)

  17. 17.

    Dunn, J. M., The algebra of intensional logics, Ph. D. Thesis, University of Pittsburgh, 1966.

  18. 18.

    Fitting, M., Bilattices in logic programming, in Proceedings of the 20th International Symposium on Multiple-Valued Logic, The IEEE Computer Society Press, Charlotte, 1990, pp. 238–246.

  19. 19.

    Font J.M.: Belnap‘s four-valued logic and De Morgan lattices. Logic Journal of the I.G.P.L. 5(3), 413–440 (1997)

  20. 20.

    Font J.M., Guzmán F., Verdú V.: Characterization of the reduced matrices for the \({\{\bigvee, \bigwedge\}}\)-fragment of classical logic. Bulletin of the Section of Logic 20, 124–128 (1991)

  21. 21.

    Font, J. M., and R. Jansana, A general algebraic semantics for sentential logics, vol. 7 of Lecture Notes in Logic, second edn., Springer-Verlag, 2009.

  22. 22.

    Ginsberg M.L.: Multivalued logics: A uniform approach to inference in artificial intelligence. Computational Intelligence 4, 265–316 (1988)

  23. 23.

    Mobasher B., Pigozzi D., Slutzki G., Voutsadakis G.: A duality theory for bilattices. Algebra Universalis 43(2-3), 109–125 (2000)

  24. 24.

    Movsisyan Y.M., Romanowska A.B., Smith J.D.H.: Superproducts, hyperidentities, and algebraic structures of logic programming. J. Combin. Math. Combin. Comput. 58, 101–111 (2006)

  25. 25.

    Nelson D.: Constructible falsity. The Journal of Symbolic Logic 14, 16–26 (1949)

  26. 26.

    Odintsov S.P.: Algebraic semantics for paraconsistent Nelson‘s logic. Journal of Logic and Computation 13(4), 453–468 (2003)

  27. 27.

    Odintsov S.P.: On the representation of N4-lattices. Studia Logica 76(3), 385–405 (2004)

  28. 28.

    Pynko A.P.: Functional completeness and axiomatizability within Belnap‘s fourvalued logic and its expansions. Journal of Applied Non-Classical Logics 9(1), 61–105 (1999) Multi-valued logics

  29. 29.

    Rasiowa, H., An algebraic approach to non-classical logics, vol. 78 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1974.

  30. 30.

    Rivieccio, U., An Algebraic Study of Bilattice-based Logics, Ph. D. Dissertation, University of Barcelona, 2010.

  31. 31.

    Rivieccio, U., Implicative twist-structures, Algebra Universalis, To appear.

  32. 32.

    Romanowska, A., and A. Trakul, On the structure of some bilattices, in Universal and applied algebra (Turawa, 1988), World Sci. Publ., Teaneck, NJ, 1989, pp. 235–253.

  33. 33.

    Wójcicki R., Theory of logical calculi. Basic theory of consequence operations, vol. 199 of Synthese Library, Reidel, Dordrecht, 1988.

Download references

Author information

Correspondence to Umberto Rivieccio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bou, F., Rivieccio, U. Bilattices with Implications. Stud Logica 101, 651–675 (2013). https://doi.org/10.1007/s11225-013-9494-3

Download citation

Keywords

  • Bilattice
  • Representation of bilattices
  • Brouwerian lattice
  • Disjunctive lattice
  • Generalized Boolean algebra
  • Category of bilattices
  • Algebraic logic